CiusELo T 18 @
ESD-TR-31-16
AD-A241 781

rege-elon Unmersty
--{twaare Engineering Instiiute

DTIC Measurement in Practice

ZLECTE Stzn Rikin
0CT 081991 Chartes Cox
July 1891

,‘ 0 /

This documenl has been a xoved
/for public iclecse. and
distribution xs

/‘ /’

/0\/ e, &

Us.pep AT

ENT
) ot O CCMMERCE
K IHFORMA‘noN SERVIC:

l / P s PRING-;ELD VA 2215
7 '
’,
4 .

81-128 \\
81-12849 01 .}0 o 027‘ \

THE TG SIPTET F BB 1 TR T B ST €0, 07 CV Dy wn T e E e THE S LUCER SXETeT by R L sty L e TE
DM K0 NC ST " T T (A e CHNGENMT X SO THGE Mt Wi A SADECR 8 S GRS Y K
Ot Y FRNILAD Y COeC 37CES v T J08 WAL LALLS S WV e

Carree Med [rverste 3005 72 3K ""“MC"QQQM LS V% y 5 7000 G AOE WS 5L IAle © BTSSR0, AT e oy Tert S e LA X
Chy AR B GT RL PINSLAL C e RN YT v IMely RS AT G T e K 0F e E QLI Y Areraments ¥ T2 270 Sacion 504 7 e

o Qa0 AT O 1T SN OOETE LI 07 I IV T ERECU ST ¢ BN (Iegre MeSsr G083 7Ol S0 T I T ATT RGO BT PO
OIS O "ERN CTEAT ALAETy DEE BPE LA LS U UNSE RN v LB Of KW EORE SHE (7 00 BAK (7 PTIS o PO T AT
AGETHIR AN T ALONG ST S0e Sreed e Frvst Larese Maon L s, (VL frrtes Aangs Bt ran A D 4 et o B0 EBEABL e
O8N Wp s e s reSe M L C v NEC Kt ket p DG of A 513 echovre &0 MADLY

——

UNLBITED, UNCLASST L
HEITY CLASST TN O TICS AL

REPORT DOCUMENTATION PAGE

Ta KDOKT SECLRNY CLASSTVCATION To RESTRICTIVE SIARKINGS

Unciassdied None

22 SECURSTY CLASSFICATIO AL THORTY 3 DETRBUHONAVAZABLITY OF KEFORT

WA Approved for Pudlc Release

B DECLAS F AN DO SGRAING SCEDCLE Dstroviion Unimiizd

A

< PERFORVCENG .S GANLATION REPORT NGRS 5. WONTTORING ORGANIZATION REFORT NS ERSS)

CMUSELSI-TAR-16 £SD-¢i-TR-16

& NAVEE OF FLRFORIENG "RCANTZATION GOREBOL | ME0F 0 XTION

So4ware Engnesnng Instiure é’ :"h‘"" SE1 Joint Program Office

c ADDRESS (Cay, Scace 20t 227 Coes T ADDRESS (Cey, Sue wé D7 Code)

Camegie Meton University ESD/AVS

Pigsburgh PA 15213 Hanscom Alr Force Base, MA 01721

1 AT DTN GSONSORNG 1 OFCES $ PROCUREMENT INSTRUMENT IDENTIRCATION NUMBER
) @ F1952830C0003

SEi Joint Program Office ESD/AVS

¥c. ADDRESS (Ceev. Sixie 224 TP Cole)

Camegie Melion University
Paisburgh PA 15213

10 SOURCE OF FUNDING MOS

PROGRAM PROJECT TASK
ELEEINT NO NO

WOKK UNIT
O NO
63756E N/A MNA NA

13 TIILE Qaclede Secaoxy Cassbcanos;
Measurement in Prachice

32 PERSONAL AUTHORSS)
Stan Rifxin and Charles Cox

132 TYPE OF REPORT 135 TIME COVERED
Final FRO3 0

14 DATE OF REPORT (Yz. Ma., Day) 1S PAGE COUNT
July 1891 72

16. SUPPLEMENTARY NOTATICN

17 COSATI CODES
F¥LD GROUP

SUB GR.

13 SUBJECT TERMS (Corsinoe on reverse of cecessary asd sdersafy by ock r.aebes)
sofiware development process

software measurement

19 ABSTRACT (Cormute 0n revense of secassasy and iéarily by bock tsber)

A few organizat.ons have reputations for implementing excellent sofiware measurement practces A sampie
of these organizations was surveyed in site visits Clear patterns of practices emerged and they are reportec
at a consolidated, “lessons learned- level and in more detaled case studies

(plascsm ova)
20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
UNCLASSEFIED/UNLIMITED SAME AS RPTDTIC USERS Unclassified, Unlimited Distribution
22 NAME OF RESPONSIBLE INDIVIDUAL 22 TELEPHONE NUMBER (Indlude Area Code) 2%. OFFICE SYMBOL
Charies J Ryan, Major, USAF (412) 268-7631 ESD/AVS (SEl)

DD FORM 1473 33 APR

EDITiON f 1 JAN 7315 OBSOLETE

A

UNLIMITED UNCLASSIFIED

SLLURIFY CLASSTICATION OF THXS

Technical Report
CISU/SEI-91-TR-16
ESD-TR-91-16

July 1831

Measurement in Practice

Stan Rifkin

Sof Process M nent Project

Charles Cox
Navy Resident Affiliate

Approved for public release.
Distnbution unlimted

Software Engineering Institute
Camegie Mellon Unversty
Patsburgh, Pennsylvama 15213

‘This technical report was prepared for the

SE1 Joint Program Chiice
ESD/AVS
Hanscem AF3, MA 01731

The ideas and findings in this repoit should not be construed as an official
DoD positron. 1t is published in the interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publicaton.

FOR THE COMMANDER

Charles J. Rya Zﬁal , USAF
SEl Joint Program Oﬂlce

The Software Engineenng Institute is sponsored by the U S Department of Defense
This report was funded by the U S Department of Defense
Copynght © 1891 by Carnegie Mellon University.

This document 5 avaﬂable through the Defense Techmcdl informaton Center DTIC provides access to and transier of

and for DoD p {, DoD and p , and other US Government
agency personnel and their contractors To obtan a copy. please contact DTIC directly Defense echnical Information
Center, Attn FORA, Cameron Staton Alexandna VA 22304-A145

Copos of this d also lable through the N. | Technicai inf Servce For |nlomabm on ordenng
prease contact NTIS dnrerdy National Techaical Informaton Service, U S D of C 3 ghold, VA 22161

Use of any trademarks in this reportis notintended in any way to infinge on the nghts cf the trademark holder

Table of Conterils
List of Figures
1. Introduction

2. Results
2.1. Decriminalization of Errors
2.2. Measurement Is Part of Something Larger
2 3. Patterns
2.4. Measures
2.4.1. Start Small
2.4.2. Use a Rigorously Defined Set
2.4.3. Automate Collection and Reporting
2.5. People
2.5.1. Motivate Managers
2.5.2. Set Expectations
2.5.3. Involve All Stakeholders
2.5.4, Educate and Train
2.5.5. Eam Trust
2.6. Program
2.6.1. Take an Evolutionary Approach
2.6.2. Plan to "Throw One Away”
2.6.3. Get the Right Information to the Right People
2 6.4. Strive for an Initial Success
2.7. Implementation
2.7.1. Add Value
2.7.2. Empower Developers to Use Measurement Information
2.7.3. Take a “Whole Process” View
2.7.4. Understand that Adoption Takes Time
2.8. Benefits

3. Measurement Mandate

Appendix A, Case Studles
A.1. Approach and Method
A2. Template
A3. Introduction to the Case Studies
Ad4. Caset
AS5. Case2
Ab. Caseld
A7. Case4
A8. Case5
A9. Case6
A10. Case 7
A1, Case 8
A12. Case 9
A.13. Case 10
A.14, Case 11

BEBGS300 ® N0 hooonnmauhsrah a®w®®®on SN o I

8

CMU/SEI-91-TR-16

A.14, Case 11 57

Appendlx B. Addltional Measuramsnt Program information 790

CMU/SEI91-TR-16

CMU/SEI-91-TR-16

List of Figures

Figure A.1-1: Organizational Structure

Figure A.3-1: Organizational Structure

Figure A.6-1: Organizatiosal Structure before PDR
Figure A.6-2: Organizational Structure after PDR

27
42

Preceding page blank

CMU/SEI-91-TR-16

[P

o = ey

CMU/SEI-91-TR-16

- ——

Acknowledgements i

We gratefully acknowledge the support of the Software Process Program led by Watts :
Humphrey at the Software Engineering Institute (SEI), at the time we conducted the survey.

The SEI Joint Program Office generously supported Mr. Cox’s effort while he was a Resi- !
dent Affiliate, particularly his travel. The Naval Undersea Warfare Engineering Station and

the Naval Weapons Center both contributed resources to aid Mr. Cox. Master Systems Inc.)
provided time and computing resources for Mr. Rifkin.

The report was reviewed by our SEI colleagues, who sacrificed time: Maribeth Carpenter,

Sholom Cohen, Bob Park, Al Pietrasanta, Jim Rozum, and Jane Siegel. The manuscript

was ably edited by Frost McLaughlin, Linda Hutz Pesante, and her colleagues in SEI

Information Management. Anita Carleton supported us as the SEI project leader. Marcia

' Theoret helped the authors handle those many details that need to be accomplished to
publish any SEI technical report.

We owe a substantial debt of gratitude to the 11 divisions of the 8 organizations that
participated in the survey for spending considerable time with us, for reviewing our findings,
and for granting us permission to publish the material presented here.

CMU/SEI91-TR-16

Preceding page blank .

L ———

P
#

ARSI
o e o WA)

A——— . et B s

Measurement in Practice -
by Stan Rifkin and Charles Cox*

Abstract: A few organizations have reputations-for implementing excellent
software measurement practices. A sample of these organizations was surveyed
in site visits. Clear patterns of practices emerged and they are reported at a con-
solidated, “lessons learned” level and in more detailed case studies.

1. Introduction

The Software Engineering Institute (SEI) Software Process Program encourages the use of
measurement! to aid the management of software development and maintenance.2 As part
of our encouragement, we seek to expose software practitioners and managers to the
greatest benefits and best operation of measurement programs. Measurement is critical to
the software process maturity framework3 promulgated by the SEI, and this relationship
provided additional impetus to collect excellent measurement practices.

This report presents the results of site surveys of 11 divisions of 8 organizations that have
gained reputations for having excellent measurement practices. While these
organizations are considered leaders in software measurement, this is by no means an
exhaustive list. By publishing these results, we hope to enrourage other organizations to
increase the effectiveness of their measurement programs.

We visited one or more divisions of the following organizations (in aiphabetical order):
Contel, Hewlett Packard, Hughes Aircrait, IBM, McDonnell Douglas, NASA, NCR, and TRW.

Il

*Current affiiations: Stan Rdkin, Master Systems Inc., PO Box 8208, McLean, Virginia 22106; Charles Cox,
Naval Waeapons Center, Code 3108, China Lake, Calfornia 93555,

1 The terms *measurement,” “maasures,” and "metrics® are used interchangeably, *M t” includ.
categones of process, product, and project.

'Deve!opmem' is used in the remainder of thus teport to mean both developmant and maintanance,

3 Watts S. Humphtey, “Characterizing the : A maturity framework,* IEEE Software, 73-79, March
1988 and Managtng tho Software Process, Wans s. Humphrey, Addison-Wasley, 1989,

4 Excollent® 1s used i the same senss as excellom compani ies® in In Soalch of Excellence, Thomas J. Peters
and Robert H. Waterman, Jr., Warner, 1982, ly, “conti y " p 13

the

CMU/SEI-91-TR-16

2. Resulis)

Persistent pattems emerged from our discussions with measurement leaders, and we found
numerous interrelationships among the pattems. There were two patterns that ran through
all the organizations: errors have been decriminalized, and measurement is part of
something larger.

2.1. Decriminalization of Errors

The organizations we interviewed discuss, analyze, examine, study, and evaluate errors,
failures, defects, shorifalls, and problems. These organizations expressed the belief that
one of the most effective ways to improve quality and productivity is to eliminate cumently
krawn errors. They seek to eliminate those errors in ways that insure they will not occur
again-by improving the underlying scftware development process that produced the emror
in the first place.

We saw this decriminalization of errors in many ways. Project estimates included expected
defect rates, and actual rates were closely tracked. Senior management project reviews
dealt in detail with causes of deviating from cost, schedule, and qualily targets. Project
managers became experienced in planning corrective actions that kept actual defects
under control. Defect prevention teams regularly looked for root causes of ervors and sug-
gested process improvements. Customer support personnel took the customer's point of
view and, therefore, had a broad definition of failure (“any problem the customer is hav” g7).

In a word, defects were made public. No one was surprised by them. Everyone was working
to eliminate them Errors were talked about in the hallways and around the water coolers.
These organizations believe that if you cannot see erors, you cannot eliminate them.

2.2. Measurement Is Part of Something Larger

These organizations developed their programs in the first place within the context of overall
software improvement (though not necessarily process improvement). Measurement was
an integral part uf a culture of quality in the organizations; it was not added on, appended,
or made to stand alone.

One of the most impressive integrations was with an organization that had a corporate
standard requiring that each new product at release have a defect density lower than the
mature product it replaced. The only way to know whether the new product had a lower de-
fect density was to measur~ the mature product and to measure the new product. And if the
measurement of the new product vias made only just before the release decision, there
would not have been enough time to take corrective action. Accordingly, this organization
learned to frack the defect density profiles over the whole development cycle in time to plan !
and execute corrective actions, if required. This organization now knows a great deal about

how to set quality goals, the shape and behavior of defect density profiles over the devel-

opment and field life cycle, and which corrective actions work and which do not. H

In other words, measurement was used to aid understanding of the software dzvelopment
life cycle. It was part of a bigger picture, part of a culture of quality improvement.

2 CMU/SEI-91-TR-16

M

2.3. Patterns

Ve observer a small set of pattemns that were consistent 2cross numerous organizalions
surveyed, though not every element of these pattems vras found in every surveyed organi-
zation. One aspact bears repeating: the pattems are overlapping and intemrelated. For ex-
ample, taking an evolutionary gpproach and understanding that adoption takes time are re-
fated: one is urged to tzke an evolutionary approach in Bght of the observation that adoption
tekes time.

The pattems fell zlong four dimensions: the content of the measures, matters regarding
people, the measurement program, and how the program was implemented. Each
dimension is elzborated below in the following sections.

2.4, Measures

2.4.1. Start Small

Several organizations collect just one datum, one measure: defects. They present and ana-
lyze this one measure in many ways, and they manage software development based on the
measure. Other organizations collect in the range of 10 to 20 measures, concentrating on
information that has to be collected for other purposes (such as for cost accounting).

All organizations emphasized measures that were conspicuously practical, that incurred
low collection cost and effort, and that could be presented simply (i.e., were fundamental or
were a binary function of fundamental measures). Typical starter sets included measures of
effort (labor hours), size (lines of code), and quality (defects).

2.4.2. Use a Rigorously Defined Set

All organizations agonized over the precise definitions of the measures they wanted to col-
lect. Typically, they first defined the uses of the measures and then prepared draft defini-
tions that were circulated to the stakeholders or their representatives for review. Many or-
ganizations concentrated on defining sets that could be collected by machine.

Some organizations prototyped their definitions by using the draft definitions on a pilot
project for a short time to see if any unanticipated concerns arose.

2.4.3. Automate Collection and Reporting

Those interviewed advised us to minimize as much as possible the impact of measurement

on software developers by defining measures that could be collected automatically. We

noted that most organizations planned for, developed, and provided automated too! support

for measurement as early as possible. Many organizations had automated line counters, |
and some organizations had front-ends to traditional time card accounting systems; these

front-ends would strip off a code indicating where in a project's work breakdown structure

the reported labor hours were being spent.

Many organizations used existing automated tools such as spreadsheet software, software
configuration management systems, and text presentation systems linked to numerical in-
formation in other files to assist in report generation.

CMU/SEI-91-TR-16 3

E!—-——————————-—'—'h

2.5. People

2.5.1. Motivate Managers

Our interviewees said that managers must be motivated to leam the velue of measurement
as a management tool and to accept the added responsidifity (and cost) of performing
measurement. Appropriate rewards and recognition need fo be established at all levels of
the organization ir: order to encourage and sponsor measurement efforis.

Many organizations saw that if line management liked what the measurement program was
producing, then by “natural selection” the effort would survive, grow, and presper. Accord-
ingly, line management has been the primary user ¢f many of the measurement programs
surveyed.

One motivation for using measurement is the support measurement provides for decisions.
In meetings with upper management or with customers, measurement reports can substan-
tiate the schedule needed for changes, the time anrd resources required for incorporating
proposed changes, and other typically controversial issues.

2.5.2. Set Expectations

Measurement can be used for many purposes. In order to set expectations, the goals of
measurement must be focused and articulated. The most common foci were on cost,
schedule, and quality. One common goal was to ascertain where additional resources
could be applied in order to improve the software product or process.

Again, we found that the emphasis was on collecting information that had to be collected for
another purpose anyway. These organizations were careful not to over-promise the bene-
fits of measurement. Measurement thereby gained acceptance as part of the “standard
practice” of software development and management, as opposed to an art practiced by
staffers who might not be involved in the day-to-day experience of software design and
production.

2.5.3. Involve All Stakeholders

Measurement is used in different ways at different levels and, therefore, is perceived differ-
ently by its users and by those measured. Organizations with successful programs found it
important during formative stages to include all stakeholders in the discussions of the goals,
uses, and definitions.

Some organizations had proclaimed measurement standards or definitions unilateraily and
found that such proclamations were resisted, particularly at the practitioner level. Later,
these organizations had to re-engineer their measurement programs in order to involve all
stakeholders.

Involving all stakeholders is one step toward earning trust (see 2.5.5). By acknowiedging
that measurement is a *loaded” subject in the eyes of those who may have had negative
experiences with measurement (SAT scores, schoo! grades, job performance evaluations,
etc.), the successful measurement programs have worked to include software practitioners
in the early stages of measurement definition.

2.5.4. Educate and Train

It is imporiant to educate and train all persons who are affected by measurement. Training
materials need to be tailored to the level and responsibilities of the target groups. It is typi-
cal for organizations to target measurement training courses for difierent audiences: an

4 CMU/SEI-91-TR-16

overview course for those who need to know why they are-or should be-involved in a
measurement program, an analysis course for managers and development staff, and an
implementation course for those responsble for preparing, entering, and validating the in-
put data. Severzl organizations stated that the payoff in measurement is its use for evaluat-
g the software process; training is reguired {o take advantage of that use.

2.5.5. Earn Trust

A fear of software developers and managers is that the results of measurement will be used
te rate individuals, projects, and/or divisions. A common practice fo allay such concemns
was to make results anonymous so that at each succeeding level of aggregation it was not
possible to identify the specific re,*orting units. For example, presentations that contain
multiple projects refer to those projects as Project A, Project B, etc. Usually, the staff
associated with each project knows which data are its own, but cannot match the other
coded project designations with real projects.

Cn a par with the rating issue is the concern that no harmm come to the bearer of bad tid-
ings-that the truth not be penalized. The earlier problems surface, the easier and less
costly it is to deal with them. This need for candor extends all the way from the sources of
the data to those who report on the resulis of the analyses.

2.6. Program

2.6.1. Take an Evolutionary Approach

Because measurement is part of a cultiare change, it must be viewed as part of a continvous
journey. Measurement can be viewed as an application of both standard management
practices and the scientific method. The most successful programs we observed supported
experimentation and innovation (both with measurement and with software development),
self-actualization, and improvement of technology and process. To support evolution, there
is a need to plan for regular reviews of all aspects of the measurement program (goals,
implementation, use, delivery, cost-effectiveness, etc.).

One of the ways this was manifested was in the changing focus of the organization’s
measurement program. As development problems made visible by the measurement
program were being resolved, new issues were being raised that called for a modification
of the measurement effort. These changes were needed to obtain the information required
to analyze the new concerns and then to determine whether the changes implemented
were successful in remedying the problems.

2.6.2, Plan to "Threw One Away”

The evolutionary approach can, by itself, imply the need to throw away some or all of the
first measurement program (a paraphrase of one of “Brooks' Laws™). Several organizations
pilot tested their measurement system, knowing that some parts of it would survive scrutiny
and that other parts would have to be revised. Along these lines, pilot programs do more
than just prove a new technology, they also help identify those items that lack merit and
should be dropped from the program. Futher, pilot programs help organizations learn how
to change, how to implement now technologies independent of the content.

Virtually every organization surveyed is using a different measurement set than it used a
few years ago. For some, this represented throwing away the program and starting over.

S The Mythical Man Month, F. Brooks, Addison-Wasley, 1975,

CMU/SEI-91-TR-16 5

2.6.3. Gei the Right Information to the Right People

The value of even the best measurement programs will be diminished if the people who
have managerial authority do not receive the information that will help guide their decision
making. Measurement reports must be relevant, timely, and limited to that information
needed at the particular level of the recipient.

2.6.4. Strive for an Initial Success

Carefully choose the initial projects to be measured. The whole program will be judged by
an assessment of the early return on investment. Many organizations achieved continuing
support for measurement by targeting projects based on their potential for a successful
measurement program.

Naturally, this factor has to be balanced with an accurate set of expectations about what
measurement can and cannot deliver (see Section 2.5.2).

2.7. Implementation

2.7.1 Add Value

Addir 3 value implies that something must result from the measurement effort. The increase
in knowledge and understanding as a result of measurement must be translated into action
by managing and developing software in better and smarter ways.

Some organizations cautioned not to proraise more than could be delivered, especially
early in the life of a measurement program when there is an insufficient base of data upon
which to support inferences. It was easier for some organizations to add value because
they bound the program’s costs by concentrating on data that had to be collected in any
case.

2.7.2. Empower Developers to Use Measurement Information
Measurement can help developers in their interchange with both external and internal
customers. The ability to quantify concerns helps developers and customers reach a com-
mon understanding as to where viewpoints and definitions differ. Further, armed with his-
torical measurement information, developers can respond to customer request for change
with reasoned analyses of the impact of those changes upon the program.

In a few organizations, we heard about the following kind of statement made by a develop-
ment manager to a customer: “l am going to work very hard to make the changes by the
time you need them, but historically, based on the figures I have just given you, 1t will take
longer than your imposed deadline. | recommend that you modify your plans in light of our
history.”

2.7.3. Take a “Whole Process” View

The application of measurement to development is just one piece, though an important one,
of the development mosaic. An understanding of the whole system development process,
as well as of measurement, is required for beneficial use of the technology. Also, measure-
ment information must be tempered by good judgment. For example, one organization
found that it had planned to improve a particular area of software development only to
discover-while developing its business case for the improvement-that software
development accounted for a very small portion of the system development cost.

6 CMU/SEL-91-TR-16

%

(VN

Also, persons experienced in software process improvement advise others considering a
proc-m of continuous improvement to be careful to stabilize the development process
befo.. rying to change it, whether the change is suggested by measurement or not.

2.7.4. Understand that Adoption Takes Time

Measurement and process improvement take time. They take more than just defining and
establishing a program. They require a change in atlitude, a shift in culture, and these do
not happen quickly. The change can take years and must be continually reinforced to sur-
vive and grow.

2.8. Benefits

We saw evidence that measurement has been beneficial to:

< Support management planning by providing insight into product development and
by quantifying trade-off decisions

« Support understanding of both the development process and the development envi-
ronment

+ Highlight areas of potential process improvement as well as objectively characterize
improvement efforts

The table in Appendix A indicates a few of the specific benefits experienced by the orgami-
zations surveyed, and the actual case studies in that appendix provide more detail about
the benefits.

CMU/SEI-91-TR-16 7

@

3. Measurement Mandate

Most improvement efforts fall not for lack of planning, but in implementation~for lack of
understanding how change is made. Measurement follows that pattern. Those
implementations that were successful experimented to find the right mix of needs, levels of
sponsorship, and scops of measurement. Accordingly, experimentation has to be
encouraged, something we see only rarefy in softvzare organizations at large, but which we
saw consistently in the excellent measurement organizations surveyed.

Perhaps the biggest impediment to successfully implementing measurement 1s fear, fear
that measurement will be used to control and coerce workers. After all, one hears slogans
such as, “You cannot control what you cannot measure” and “What gets measured gets
done.” There is no better prescription for driving out fear than that offered by W. Edwards
Deming in Out of the Crisis.® We recommend it to our readers.

There are many good examples of successfully implemented software measurement pro-
grams in this report that will serve our readers as an inspiration. The next step for an
organization desiring to start a measurement program or to increase the effectiveness of an
existing program is to study the patterns in the previous chapter and the case studies in Ap-
pendix A in order to develop a program tailored to the organization's culture, structure, and
needs.

6 MIT Pross, 1986.

8 CMUY/SEI-91-TR-16

e e m—

Appendix A. Case Studies

A.1. Approach and Method

We developed a survey instrument and canvassed a variety of experts and authorities to
dentify orgamizations reputed to have excellent software measurement programs. We then
selected a cross-section of defense, commercial, and government software development or-
ganizations from the candidates identified to provide as representative a picture of the state
of the art among the leaders of software measurement as our resources would permit We
conducted the survey from February to August, 1990.

We visited 11 sites representing eight organizations. We interviewed a wide variety of peo-
ple; for example, the leader of a corporate advanced technology applications department, a
department manager tasked with advancing measurement efforts within a division, a soft-
ware project manager who was creating a measurement program to help manage his own
project, a cost engineer, a quality assurance manager, and software engineers. We spoke
with people at project, site, and corporate levels. The number of persons with whom we
spoke at each site ranged from one to more than a dozen; the interviews ranged from half a
day to several days. While we used our survey instrument to structure and direct our inves-
tigation, the reported results of each visit reflect the variety of experiences and organiza-
tional positions of our sources.

We encouraged our sources to communicate with us in their own terms. We have attempted
to report their disparate descriptions within a common structure in this case study section in
an attempt to reveal patterns across the programs. At the same time, each case study has
been written as much as possibie i a style reflecting its sources; therefore, some consis-
tency of presentation style among the case studies has been sacrificed in order to achieve
an accurate charactgrization of what we heard.

Each case study is introduced by material highlighting the organization’s distinguishing
characteristics to indicate the environment and "culture” that we observed, but which may
not have been reflected by looking at measurement issues alone.

To ensure candor on the part of our sources, we promised confidentiality to the organiza-
tions surveyed, so the identity of the respondent organization is not provided with the case
studies. In order to keep the identity of their organizations confidential and to preserve pro-
pnetary information, many respondents were reluctant to share for publication either (a) the
specific metrics they use, or (b) typical values of measurements. As odd as it may seem for
a technical report on measurement, we were unable to obtain permission for much in the
way of tangibles: graphs, charts, tables, and actual measurements. This constrained our re-
sults to subjective and qualitative terms.

All of the case studies have been reviewed by the surveyed organizations and all have
given their permission for publication.

CMU/SEI-91-TR-16 9

—
{
;
!
1
i
1
i
i
l
{
b
—
f
e ——————

A.2. Template

We divided our observations into the following categones:

Distinguishing characteristics - We observed more than measurement alone. We '
saw the results of organizational culture, so in this section we briefly state what we

saw. L
Organization - How an entity is organized is sometimes reflective of its capability to %
produce quality software, so we have recorded it here. Also, it helps to answer how '

best to organize the measurement function. t

Metrics history - We tried to capture the relevant history that brought the measure-
ment program {o its current state.

Current program - We tried to obtain the actual metrics that were being recorded. In
many cases, we could not obtain permission to report them.

Future plans - Many programs have announced plans for the extension of the
measurement program and we record them here.

Funding - The sources of funding varied and we report here what we were told.

Lessons learned - These are usually in the form of paraphrases from the persons
we interviewed. Many are disjoint, spontaneous, prescriptive statements; sometimes
they are statements of the benefits.

-

A.3. Introduction to the Case Studies

The following table summarizes some of the case study information and can be used as a
navigation aud to locate case studies that meet specific criteria.

1 2 :

Size

Large dw. in large org.

Large div. in large corp.

Business concentration

Communications

Defense & aerospace

Average product size

Systems programs

No. of programmers 100s 1,000s
(approx.)

How long metncs Since late 1970's Since 1973
program existed

No. ot classes of 5 metrics as base 11 measures
metrics, or no. of metrics

Where in organization is | Software Engineenng | Labs/Sites

measurement program
managed

Quality and Planning

Source of funding

Cost of doing businass

Cost of doing business

Benefits

« Each product at re-
lease Is better than the
provious one at retirg-
ment

» Metrics are used as
competitive bench-
marks, targets for im-
provement

+ Common language for
project management

10

CMU/SEI-91-TR-16

M

program existed

3 4
Size Large org. Large dw. In large org.
Business concentration | Computers & electronics | Space flight
Average product size Varies widely 150 KSLOC
No. of programmers 1,000s 180
(approx.)
How long metrics Since 1983 14 years

No. of classes of
metrics, or no. of metrics

3 sets of corporate level
metrics; 3 sets of
division and lab
measures (one still in
development); various
project-specific
measures. Some
measures are applied at
several levels

Basic set addressing
cost, errors, project
chars, history,
resources, plus add'l
metrics dniven by the
Goal/Question/Metric
paradigm for each
project

Where in organization is
measurement program
managed

Corporate engineernng
and quality groups,
product fevel quality
groups, division
productivity/quality
managers

Program office

Source of tunding

Overhead

« "Tax" on programs for
collection

« Separate line item for
processing

« Research funding for
analysis

Benehts

High Level--Strategic
measures to view
product quality, time to
develop products,
resource usage, generic
problems

Middle Level--More
process focused, used
to ccntrol development
in lab environments
Low Level--Deal with
more immediate issues
such as readiness for
integration, ability to
meet milestone
deadlines. etc.

« State of the art insights
into the development
process and the value of
alternative tools and
methods

» Most of the insights
into software engineer-
Ing & development that
have come from metrics
arise from this program

CMU/SEL-91-TR-16

5 6
Size Large div. in large org. | Large div. in large org.
Business concentration | Space flight Defense & aerospace
Average product size 300 KSLOC
No. of programmers 325 75
(approx.)
How long metrics Since the early 1970s | New
program existed
No. of classes of Four classes (product, | 14 metnics
metrics, or no. of metrics | schedule, cost, quality)
Where in organization 1s | Cost engineening Office of the chief

measurement program
managed

(project) engineer

Source of funding

In the contract

Combination of over-
head and direct costs

Benefits

+ Cost and schedule are
segregated into func-
tion- and time-driven

+ SEl maturity level 5

» More time spent on
inspections

+ Project is on time and
within budget

12

CMU/SEI-91-TR-16

l e

7 8
Size Large dw. in large org. | Medium size div. 1n
large org.
Business concentration | Defense & aerospace Instruments

Average product size

About 30 programmers,

Small, embedded n

200 KSLOC instruments, 75-100+
KNCSS
No. of programmers 500 45
(approx.)
How long metrics Since 1972 Since 1986
program
No. of classes of Many Many

metrics, or no. of metrics

Whare in organization is
measurement program
managed

Quantitative Process
Mgt (QPM) function of
S/W Engrg Process Grp

Mostly in QA group

Source of funding

Project budgets for data
coliection, project
analysis and SEPG for
process improvement
(data centralization and
org-wide analysis

Overhead

Benefits

* Reduce bidding rate
15% three times in past
10 years

*» 97% of promised func-
tionality delivered with
resources forecasted

+ “If you take process
measurement away, you
can save the cost of the
reports, but you will pay
for it with surprises dur-
ing development”

+ “Culture™: team fesling
of mutual support and
direction

+» Maturity level 3

« Division has been able
to improve its develop-
ment environment

» Managers can get the
information they need to
do their jobs

+ The group as a whole
has made progress in
process understanding

CMU/SEI-91-TR-16

13

9 10
Size Large dw. in large org. | Large org.
Business concentration | Defense & comm. Computers

Average product size

10s of KSLOC,; 30-50
programiners each

Major programs: 100
programmers build 1

million SLOC
No. of programmers Many 4,000
{approx.)
How long metrics 2 years Since 1969
program
No. of classes of 2-5 metrics for each 9 metrnics

metrics, or no. of metrics

maturity level

Where n organization is
measurement program
managed

Corporate R&D

Corporate quality
assurance

Source of funding

Overhead and business
units

Cost of doing business

Benefits

* Tailored to process
maturity

» Vendor products being
evaluated numerically

* More rational testing:
every hour spent on
metrics saved 10 hours
of testing

» Portability & reuse
substantiated

+ Software no longer the
cause of all schedule
slips

» Documented 8% im-
provement in productiv-
ity due to using auto-
mated tools

11

Size

Medium s1ze div. in
large org.

Business concentration

Defense & aerospace

Average product size

150-200 KSLOC

No. of programmers 40
(approx.)
How long metrics New

program

No. of classes of
matrics, or no. of metrics

Dozen measures cf
resource usage,
product, and error data

Where in organization is

Software development

measurement program | management
managed
Source of funding In the contract

Benefits

New program

14

CMU/SEI-91-TR-16

S

A4. Case

Distinguishing Characteristics

There is a corporate directive that every new version, at release, will contain fewer defects
than the last version contained at retirement. A defect prevention process has been widely
used for some time. Many of this organization's software products are mature, so the organ-
1zation concentrates on examining just how defects escape the development process and
get incorporated into the product. Some defect injection processes have been permanently
corrected. The defect prevention process may be the highest leverage way for this organi-
zation tu improve at this point because the staff 1s well-trained in software engineering and
the products are mature.

Organization

This programming organization develops and maintains software products for communica-
tions systems for @ major computer manufacturer. These preducts contain about half a mil-
lion lines of code each.

Each product area performs its own design, implementation, unit test, and functional verifi-
cation testing, there is some process and too! support dedicated to each product area.

Each product area is organizationally divided into development and testing groups. Each
group is then partitioned into units with responsibility for major components of the product
software. Each one of those units is further broken down into departments of 8-12 people
who are collectively responsible for the modules assigned to them.

In addition to the product areas, there are numerous laboratory-wide functions. For exam-
ple, a software engineering group provides process, metric, and tool support to all product

areas. In the foliowing figure, ihis group is labeled “Software engineerning.” There is also a
testing organization, System test, that is independent of the development organizations.

shown below.
Une of Busines:

Telecomm, A big product
products L G P Net management

systems mgmt

| Business &

System
tost

l System
|rea

Figure A.1-1: Organizational Structure

CMU/SEI91-TR-16 15

There are generally three levels of test bevond unit test From the l2ast integrated and
farthest from the customer, to the most inlegrated and closest to the cuslomer, they are:

= Functional verification test
« Product verification test
- System verifi.ation test

Metrics History

in 1985 an effort was initiated to inmwrove the way sofhware was being developed. A method

was defined for evaluating software development pieducts. This method was documented

in detait in a pair of corporate instruciions. Each producing organization was responsitie to

define process goals and methods to belter manage development processes and improve '
efficiency.

These instructions prompted the crganization to develop a five-point strategy for the
initiative:

« Inject fewer defects

* Find defects sooner

» Ship fewer defects

« Improve productivity

+ Reduce development cycle elapsed time

The measurements used to help monitor progress foward these goals were:

« Toial internal defects per KCSI: indicates progress in dealing with defect injection
(KCSI are thousands of changed source instructions, where change is defined as
new and modified).

« Percentage of all defects found before functional verification test: shows hows well
design and implementation phases are discovering defects and irdicates the quality
delivered to the “customer” (represented by the functional verification test organiza-
tion).

Defects (total valid unique problems from the field) per KCS! (thousands of changed
source instructions) and per KSSI (thousands of shipped source instructions).

KCSI per person-year.

» Develcpment elapsed time.

Data for 1986 provide the baseline for both the metrics and the five-year improvement plan.
Based on lessons learned from the higher quality products, products with lower quality
levels should improve faster. Each product must show improvement; it is not sufficient just
to stay within the range of “acceptable” quality.

16 CMU/SE!I-91-TR-16

s—————————————————————

e o dm——

Current Program

The major focus of this organization’s program is on process changes to improve the way
work is accomplished, resulting in increased product quality and reduced cycle time.
Additional effort is targeted foward improving the estimation and forecasting process to
better predict both the resources and time frame required to develop software, and the
resources that should be budgeted to maintain commercial products.

Process improvement was initiated at the corporate level. The focus of internal
measurement is to inject fewer defects and to find defects sooner (i.e., do not solely rely on
testing to find product defects). The goal is for the best product to get betier and the worst fo
improve quickly. The rules are to stay within farget goals and fo improve on past
performarice. This quality focus embraces code already released (base code) as well as
nevdy developed code.

Defects found by the testing organization, customer-reported defects, defects per KCSI
(new and modified code), and defects per KSS! (shipped source instructions) are the only
numbers carried forward for field tracking. These numbers have provided an early warning
of quality concerns and allowed product management to concentrate on potential and real
quality problems.

Analysis charts of predecessor, planned, actual-to-date, and expected defect values per
KCSI provide signal flags for the development phases: three levels of dasign (product,
component, and module), code, unit test, other (e.g., defects found by developers after
release to testing), and the three verification test fevels (functional, product, and system).
Deviation from the target defect range for a particular phase indicates possible
development process problems that must be investigated.

Total defects per KCSl is interpreted as adherence to a defined, repeatable process; that is,
a low and stable value for total defects per KCSI is considered to be evidence of following a
defined, repeatable process. Cuality levels for the development stages are evaluated
against the plan. Significant variations must be xplained and corrective actions are taken
where viarranted.

Quality certification is conducted at least two times: prior to product announcement and
prior to product shipment. The cbjective of quality certification is to decide whether the
product will meet post-shipment targets; it is an independent assessment of product quality
performed by an independent quality support group.

Quality reviews are held quarterly with upper management and cover all products within the
organization. The reviews are at a summary level with more detailed presentations for key
products. Detailed product-level quality reviews with product management are held at least
monthly and more often with individual departments as needed.

CMU/SE91-TR-16 17

External Measures - For each of the measures below, there are several variants of
graphical representation: stacked and unstacked, instantaneous and cumulative,
customer-reported and all sources, efc. These measures are tracked for shipped software:

- Number of copies in field use - Indicates how many product users there are and as-) '
sists in predicting staffing levels required for the service organization.

Number of valid, unique problem reports from the field, projected vs. actual, by
version and release, per KCSI over the life of the product.

Number of valid, unique problems from the field, projected vs. actual, for ail
releases, per KSSI.

Total problem reports per user-month of experience, planned vs. actual.

Fixes in error over time.

There are a number of other measurements of product quality, many of them more
detailed breakdowns of these data, that are also tracked.

Internal Measuremepts - These measures are collected and reported for code still under de-
velopment.

« Percentage of defects found before functional verification test (a range based on
statistical experience).

+ Internal defect injection rate goals (a range based on statistical experience) per
KCS! vs. actual by product release.

+ Deftects per KCSI by development phase (product level design to unit test, and func-
tional verification test to system verification test), showing predece:sor, plan,
expected, and actual-to-date.

For each product release, a quality summary report is prepared that includes: ¥

» Product identification
« Ship date
« Total number of changed source instructions
« Product quality: projected field defect rate (valid unique problem reports per KCSI,
over the life of the product.)
* Process quality:
- Percentage of defects encountered before functional verification test
- Defects per thousand lines of changed source instructions during the phases of
functional verification test to system verification test ‘
- Total defects per thousand lines of changed source instructions during
development

The standardized approach permits the automation of a large part of the collection of data
and chart generation. This frees resources to address specific process issues. “The result {
is delighted customers and good estimates of maintenance costs.”

18 CMU/SEI-91-TR-16

e m————————————————

Future Plans

hamnr oy o pm—— o St
N b oA

They plan to expand tracking to include the rate of defect injection by phase. “We've got to
get a lot better.”

[T——

Funding
All measurements are funded as part of product deveiopment.

Lessons Learned

.

Don't set the release goal for dafects per thousand lines of code arbitrarily. Goals
for quality improvement should be backed up with concrete process improvement
actions.

Measuring problems per user-month was found not to be useful; the rate of
problems can go up as the problems per user-month decreases, because user-
months can increase dramatically just after a new release. There are a lot of
confounding influences in this metric.

The best way to manage fixes in error is to go by raw numbers, not by percentages,
rates, or other normalization. The reason is that derived measures (that is, ones
computed from two or more different dimensions) can deviate for a number of
reasons not related to the factor you are examining. For instance, if fixes in error per
KCSI decrease, it may be because there has been an extraordinary increase in the
number of changed sourcs instructions and not because of any improvement in the
fix process.

Internal defect discovery (via inspection and test) is a fairly good predictor of exter-
nal (field) discovery rates if a repeatable software engineering process is followed.
The biggest challenge is sensitizing the organization to the customer. If developers

don't follow the process, then the customer will discover the relatively high number
of defects that have been injected.

e A —————————— T

.

CMUISERG1-TR-16 19 !

A.5. Case 2

Distinguishing Characteristics

This division, a pioneer in measurement, has a very strong quality culture and a reputation
for producing high quality systems. The measurement program has been in place for 18
years and is just emerging from a major redefinition.

Two organizations were surveyed: a division headquarters staff organization and a division
site.

1. Division Headquarters Staff

Organization

This is a large division specializing in computer systems development. The division pro-
vides the federal government with systems solutions that may include integrating hardware
and software from other manufacturers with their own products.

The division headquarter's measurement effort is a staff function under its software engi-
neering process group. One person has responsibility for the analysis of measurement in-
formation submitted by the sites.

A software engineering council and a software technical steering group control the metrics
program based on input from users or sites, division headquarters staff, and others. Di-
vision headquarters maintains a list of proposed changes and the steering group prioritizes
these changes.

Metrics History

Some measurements have been collected since 1973, when a program to look at new
software development processes was initiated. The division redefined the system of
measurement in 1979 and again in 1989 to take advantage of better tools and to establish
a historical database for the division.

The division effort grew out of problems resuiting from inconsistencies across different sites.
The renewed (1989) effort was guided by a white paper produced under the sponsorship of
the division's software engineering council, a body with representatives from all sites.

The white paper identified several services the revamped measurement program should
provide: (1) add previously lacking key information regarding reuse, quality, and technol-
ogy; (2) promote use of the database by making it easily accessible to all members of the
division; (3) allow for effective monitoring by upper management and division headquarters,
while maintaining anonymity of the projects.

Another concern described by the white paper was a desire to determine how competitive
the organization was and the reasons for that standing. Still another goa! was to help
manage programs-in-progress and plan for their completion.

20 CMU/SEI-91-TR-16

& e ——

S ———— o ——y

The duwvision has significant support for this effort from the division manager for software
technology who is, n turn, supported by the software engineering council, which is com-
prised of senior-level software managers. Another key factor supporting this division-level
program is the work in progress to establish universal measurement objectives at the cor-
porate fevel. !

R A

vhe focus of the effort is to create a crisp, lean set of measures that look not just at how)
things are done now, but also at how to improve the way they will'be done in the future. .o
Therefore, the major effort has been to establish a small set of agreed upon definiticos to .
keep the measurement requirements simple.

Current Program

RO p—

Data collection with the current system {resulting from the redefinition effort in 1989) began
in the fourth quarter of 1989. The first report was produced in December 1989 using a tool ,
developed in-house; the report covered 11 projects (2 completed, 1 nearly completed, the ,
rest slill in progress). Each site has a Site Measurements Representative who is respon-)
sible for collecting data according to site proceduras, recording data using the tools system,
and, with congurrence of site management, transmitting site data to division headquarters. .

Data are collected by project, by site, by type, and by class (company or subcontractor). All)
sites use the in-house tools. Reports are submitted at four milestones. proposal submission, ,
contract award, fall ptan, and contract end. . '

Measurement data and reports are then provided back to the sites for use and analysis.
The individual sites themselves may-and most do-keep additional metrics for local con-
cerns.

Definition of the measures, the measurement practices, and the tool requirements are con-
trolled by the sofiware technology steering group and the saftware engineering council.
Coliection of the measurement data is viewed as patt of a seftware manager's job.

The current measurement system consists of:

+ Ten measures that have been systematically reported since the fourth quarter of
1989. An 11th measure was added in April 1990. Identification of these measures
was made by the software engineering councit level, and agreement was reached
based on past history, current technology, and perceived needs of the software
engineering councit based on practitioner and management input.

Program support for data entry, data submittal (from sites to headquarters), and re- :
port generation. The raw data are collected by automated tools that then calculate
the 11 measures and produce a set of measurement reports for the site user. Upon
approval of site management, these reports are then transmitted to division head-
quarters.

+ An on-line mainframe SQL-based database that is accessed by the sites.

CMU/SEI-91-TR-16 21

M

—

The measurement program:

« Establishes a rational basis for process evaluation and improvement.

« Provides summary reports to all division programs via software engineering council
representatives.

« Promotes competitive bids via insights into productivity achieved by top performing
programs.

+ Promotes management tracking of projects.

Future Plans

A list of proposed changes (measurements, practices, tools, etc.) is maintained at the divi- '
sion level and is prioritized by the software technology steering group and the software
engineering council.

Future enhancements to the program will include both systems engineering and integration
and test measures.

Some metrics tools such as a language-sensitive line counters are under review.

Funding

At headquarters, one person's time has been devoted to initiation of the measurement
program for the first two years. Too! development has required two person-years of effort.
Tool enhancement work is continuing.

Division also has given the sites initial funding to cover the cost of entering data into the .
database. This one-time increment has cost two labor months and $5,000 of computer cost
per site.

Lessons Learned

» A great deal of effort was required to reach final agreement on crisp definitions.
They leamed to focus on keeping measurement requirements simple and to target a
solid base set. This provided a critical foundation for what is seen as an evolution- .
ary effort. -

Putting together a plan was relatively easy. The real work began when it was time
to establish, document, lay out, and set up the measurements themselves. This pro-
. cess is also evolutionary.

Pilot installations helped to reveal early problems and provided a testing ground for
solutions. '
Involve key management early and get commitment for automated support early.

To build and maintain early support for measurement, the measurement program
staff planned and strived for meaningful data early to demonstrate the productive
potential of the program.

They learned to limit resistance to measurement by dealing with practitioner con-
cerns:

22 CMU/SEI-81-TR-16

?—-—————————-&

- Treating data on an anonymous basis in response to fears that measurement -
formation would be used to rate practitioners and managers (“You can have my
data, but don't single me out’). Data are identified in the database as representing
Project A, Project B, etc., not the real project identifier. This system has helped to
earn the trust of practitioners.

- A written rationale and explanation of the measurement factors has helped keep a
“lean and crisp” program focus. By being able to offer clear responses to questions
directed at the reasons for collecting specific information (“What do you want this
data for anyway?") they have been able to keep the program within manageable
bounds in both size and cost.

The transition effort involved identifying likely supporters as targets for first imple-
mentations. These implementations all began with a minimal set of measures that
division headquarters required of all sites, with each site able to tailor additional
metrics for local needs.

The friendliness of the automated tool was considered a major plus. Also,
measurement use and thinking is integrated into the standard division software eg-
ucation program, so measurement on the job is hot a surprise or disruption. This
education effort reinforces the software measuremsnt requirements documented in
division practice.

The measurement program has promoted more competitive bidding as a result of
increased understanding of software productivity, quality, and technology.
Measursment provides visibility into the software engineering process and that sup-

ports rapid, dynamic detection and reassessment of development status and pro-
vides a basis for process evaluation and improvement.

CMU/SEI-91-TR-16

23

2. One Division Site

Distinguishing Characteristics

This site has been gathering software measurement data since the mid-1970s, when the
group helped pioneer the advances being made in what was then a new field.

Current Program

Software measurement is part of the cost engineering function, which, in turn, reports to the
controller.

Among the goals of the current program are;

+ Collecting and classifying objectively verifiable properties of software projects with
the focus on management controllable items, i.e., software tools, programming prac-
tices, and personnel capabilities.

+ Creating an ongoing calibration effort for estimation.
» Putting decision variables and their values in context.

A major effort lies in calibrating the historical database to several models (SEER, PRICE S,
Before You Leap).

Measurement is used to create goals. Cost engireerings competitively benchmark the divi-
sion’s performance. When competing against the leaders, cost engineers encourage line
management to set as its performance goal meeting or exceeding the competitive leader.

Data are collected selectively because of resource constraints. In fact, sites gather more in-
formation than they send to division headquarters. Major areas of concentration are: input,
labor, cost, product, quality.

Uses of the data include:

+ Supporting proposals as well as government and subcontractor negotiations

- Performing costbenefit analysis, risk analysis, and performance measurement
(estimated time to completion, estimated time at completion)

+ Planning schedules
Future Plans

With division headquarters leading the effort, this division is seeking faster turnaround time,
more detailed data, and higher local sponsorship of the program.

24 CMU/SEI91-TR-16

P ————

Lessons Learned

Stay close to your data. Know what it means, what its limitations are, under what cir-
cumstances it was collected.

Focus on estimation to help the drive toward improvement. Look at cost drivers and
at what gives the greatest leverage for improvement.

The “lean and crisp” rationale is that the information to be gathered is information to
be collected anyway; thus, the effort should not place a great strain on the practi- i
tioner.

Practitioners can react negatively to the creation and tracking of defect reports be- '
cause they view such activities as whistle-blowing, and feel that pointing out defects
is an audit function instead of an improvement function.

Initial success and a sense of adding value to software management are both very
important.

-

CMU/SEI-91-TR-16 25

w

A.6. Case 3
Distinguishing Characteristics

This corporation has been a market leader in electronics for marny years. It is well known for
its high standard of quality for hardware and for its pioneering work in software
measurement. Since we visited this organization in the early stages of our investigation,
the corporation has taken further great strides in software measurement. It is an
organization of, for, and by engineers.

Organization

This organization is the headquarters corporate engineering staff of a major electronics
equipment manufacturer. Among the programs centralized at the corporate level are the
corporate engineering department which includes a software process assessment program.
This program measures software development processes at product divisions throughout
the corporation.

The corporation is divided into self-contained product-related sectors. Each sector 1s
composed of several groups or business units that are themselves aggregates of divisions
and operations. While the divisional structure vary, the quality manager usually reports
directly to the division manager and the productivity manager normally reports directly to
the research and development (R&D) manager who, in turh, is subordinate to the division
manager.

26 CMU/SEI-91-TR-16

——
-

Corporate z
Corporate '
[~—==__— 1 Engineering
Sector ?
— E
Group
Division
Manager
Quality R&D
Manager Manager
Productivity (Lab) Section| | (Lab) Section
Manager Manager Manager
Project Project
Manager o Manager

Figure A.3-1: Organizational Structure

Metrics History

The corporate-level measurement software quality activity began its evolution with the
establishment of a software quality council in 1983. It was chartered to provide software
engineering training and to operate a software engineering lab. In 1985, a network of
productivity managers was established to provide an infrastructure supporting the
improvement of software development environments and methods. The work In
environments and systems has proceeded in parallel with a corporate quality program
started in 1987.

CMU/SEI-91-TR-16 27

M

Current Program

The charter of corporate engineering's process assessment program is to improve software
development environments by developing and implemanting a software engineering
review process. The activities include measuring division software development methods
against company and industry norms and performing analyses to identify the corporation's
strengths and weaknesses and to determine high-leverage areas for improvement across
divisions.

Analysis activities consider:
+ Human resource vanables
+ Project management and control
« Programming environments
+ Tools and methodologies
+ Defect prevention and removal
+ Physical environments
+ Measurement
+ Maintenance

Corporate process assessments are performed approximately two times per month by
invitation of the R&D managers. Participation is not required, and comparisons with group
or company-wide measures are the prerogative of the division. No “corporate standard” has
been established. The basic goals are to establish a division baseline, identify strengths
and weaknesses, and provide follow-up measures to show trends over time.

When a request for analysis is received by the lab, the stalf assigns it a priority and incorpo-
rates it into the evaluation schedule. The initial assessment takes about a week, with two
days of interviews (data gathering), two days of initial analysis, and a feedback session on
the fifth day. Final analysis and preparation of the written report takes another 6-8 weeks.
A second assessment (again by invitation) may be made 18-24 months later to measure
again and report on changes. Due to the fluid nature of the corporation's management
structure, situations can change radically in such a time frame.

Software assessment program results reported to date include a 95% rate of requests for
follow-up analysis and 75% of all groups use the analysis data for planning. These results
are used by other function areas to perform corporate-wide trend analysis, support interral
market research, and promote best practices.

Measurement usage in the dwisions has been on the rise in the past three years. This
trend supports the growing awareness of, and belief in the importance of process improve-
ment. Software measurement of several factors is commonly performed:

28 CMU/SEI-91-TR-16

Eactor Aspect Measured

Code Source size
Quality/Relability Defect quantities
Defect severities

Duplicate reports for same defect
Efficiency of testing in defect removal

User Satisfaction User defect reports
User requests for enhancement

In addition to the above, approximately half of the projects evaluated also tracked rehability
and quality properties such as defect origins, defect distributions through code, and invalid
defect reports:

Today, most projects use formal ‘ools to help track development progress. The defect
tracking system, for example, is made up of two internal tools, one of which tracks pre-
release defects found in the lab. The other tracks post-release defects after delivery to the
customer.

A survey of 201 project managers' satisfaction with the current software measurement
methods followed a roughly bell-shaped distribution with about 20% judging the effort as
good/excellent, 40% as adequate, and 40% as poor or not used.

Measures in addition to those defined at the corporate level are collected at individual sites.
Such customization is encouraged by corporate engineering. Many are collected by inter-
nally developed or commercially available tools; some still require manual input.

Some of the sita-specific measures are:

+ McCabe complexity: A preliminary study has indicated that a value of 15 should be
the signal flag for potential problems. Some labs have shown no correlation be-
tween use of this complexity measure and problems found in individual modules.

+ Turmoil: The rate of change of source lines of code. This is used to help determine
high risk areas as well as readiness for releass.

+ DeMarco quality factor

« Shp rates: A scheduling aid which seeks to mitigate the effect of conflicting restits
produced by the many different schedule estimation tools used in the cosporation
{e.g., SoftCost and COCOMO). Different environments and weighting factors make
comparisons difficult when different tools are used.

+ Inspections data such as the number of defects found and the rate of discovery.

One product group has begun a software quality effort to unify the existing, disparate quality
initiatives among the group's divisions. The nature of the group (it is one where software
development is on a par with hardware in terms of importance) makes this larger scale
effort viable. Thus, in late 1989 a group-wide productivity, methods, and education effort
was initiated to enhance the group's competitive advantage. The initial focus has been to

CMU/SEI-91-TR-16 29

plan for the effort by estzblishing a beselire to show vhere the group sizxds in releton 1o
the rest of the corporation and to mdushy.

All the Iabs in the group have baen through the first corporate engmeering sofiware process
assessment. Much progress has been medz @ dalinig stendam metics for the grorp axd
in getting a group-wide mekics program gong.

The group decided to siart with a Emiled set of metrics, which is pastly a reflection of the
difficulty in getting agreement on a common measure of produciivily. To estzbsh a base-
line and to help plan for improverent, the group is going through a proposal review
process for more precise metrics. Of 10 metics originaly proposed, the group is working
on the definition of 5 that have a streng quality orientadion (they found defining straight
productivity metrice difficult).

Tnose five candidates are:

1. Cumulalive defect density during the first year post-release.
2. Pre-release defect density for mzjor software phases, and pre-refease defect
density for each module at integration.

3. Error detection effectiveness, defined as pre-release defects divided by the total
number of defects found pre-release.

4. Open critical and serious defects from valid problem reposts.
5. Number of hotsites per time to resolve problems (2 *hotsite” is a situation in which a

customer is dissatisfied with a field representative’s handling of a problem and the
lab is called in to resclve the issue).

Future Plans

As noted in the introduction, the measurement program at this organization continues fo
evolve. The future plans when we visited early on in our study are now becoming reality.
The four-year effort for the definition and application of measures targeted for use at particu-
lar management levels has now been implemented.

o

The program as it now exists identifies measures appropriate for three management levels:
High Level for group managers and above responsible for multiple divisions of 3,000 to
10,000 employees; Middle Level for division managers and their R&D m-nagers; and Low
Level for project managers on software development projects. While some measures are
specific for particular levels of management, others are used by multiple levels with more
detail at the lower levels (e.g., middie level management might track size vs. effort for a
project while lower level management would track size vs. effort for a module).

The organization’s measurement program continues to evolve. The long-term vision
projects software metrics which not only control software projects but reflect true
understanding of the process of software development.

Funding

Corporate engineering is funded from overhead. Routine measurement is accepted as a .
cost of doing business for the product divisions.

30 CMU/SEI-91-TR-16

e —m—

Lessons Learned

» Measivement is 2n evolutionary process t23ored to the corporation’s culiure.

- Resistance hzs been encountered to collecting non-simple medsures and to
Crawing condlusions from them. B is important that the use of the measures is at
leest as visbie 2s the coliection of those measures.

» Standardization of the melrics effort, including establishing a commen sst of
enactable measures in one format, presents both technicat and transitional

es.

The high degree of autonomy granied the divisions creates some potentiat for the
creztion of highly individualized programs. One goal of the corporate manzgsment
progrem &S to bring some standardization to the process so that the benefits of the
mezsurement program czn be more fully realized. The 2bility to make comparisons
across product fines, groups and process differences viould pay important dividends
for the corporation.

Althcugh a great dezal is being done across the corporation, the efforts are
sometimes disjoint, and comparisons and aggregate analyses are difficulty.
Manzgement understanding of software efforts is not as the same level as that for

.

harderare efforts.
« Three factors critical to the success of the corporate software assessment program
are:

- The solid foundation of experience in sofiwase measurement supported by a set of
common terms and standardized measures and a corporate-wide awareness of
software measurement and v/hat its use can accomplish.

- An organizational infrastructure which supports sofiware measurement.

- Recognition that measures must be geared to different levels of management
information needs.

U VT

CMU/SEI-91-TR-16 31

— e |

poory

~ava

A7 Cssed

Distinguishing Characteristics

This organization has taken advantage of its leadership vision and its unique access to
government, academic, and industrial resources to advance the state of both the art and the
practice of measurement technofogy.

Organization

This is the software systems development branch at one site of a large government agency.
The agency is responsible for time-critical flight dynamics comp-itations for earth-orbiting
unmanned space flight.

The branch itself is part of a larger cooperative effort among the government agency and
corporate and academic organizations created to investigate the effectiveness of software
engineering technolcgies applied to the development of software for the agency's applica-
tions.

The organization has 30-35 government programmers and 150-250 contractor program-
mers.

Metrics History

The organization has been collecting metrics for 14 years. The purpose of the measure-
ment effort has been to assess the effects of the various methods, tools, and models on the
software development prccess as applied in the organization's environment. The goal is to
identify and apply the best development practices. ,

In the beginning, the program had some rough edges; for example, a major problem was
the inability to deliver feedback as soon as promised. Gradually, the credibility of the effort
was built up, especially the application to management decision-making; regrettably, soft-
ware developers still do not see much professional benefit. Even so, the acceptance of the
program inside the branch has allowed a clean, neat, and accurate process for data coilec-
tion to evolve.

Those interviewed stated that software development today is done very well relative to a
number of years ago, but that there is still a long way to go. They had started by trying
measurement in a big way. As the effort matured and was used, the non-productive
measures were dropped and others were added.

The initial motivation was to support a research effort to expenment with evolving tech-
nologies to fry to identify the most effective technique(s) for a particular project, the goal
being to develop a set of standards and practices. The branch’s major charter is to develop
software, not conduct or sponsor research, but funding was ohtained for measurement b2-
cause of its direct applicability to development.

Much of the eary metrics collection effort was trimmed due to the noise that swamps the
important issues. For example, effort was collected so precisely that its {local) variations
could have masked long-term trends.

32 CMU/SEI-91-TR-16

Current Program

Now the focus is no fonger on rapid feedback of information to practitioners (a long-time
goal that proved impossible to achieve), but rather on incrementally improving the devel-
opment process by providing measurement information to the appropriate level of software
management. Opporturities are being sought for experimental projects and language-
specific technical testing.

The branch collects about half as much data today as it did eight years ago. Too much data
without strong drivers as to the reasons for collecting them camouflaged the real issues
{which is also a “lesson learned”).

New software practitioners receive a ons-hour presentation on how to record data on forms.
Program librarians get involved as well because they extract line counts and phase comple-
tion dates. Raw data from recording forms are keyed by data technicians.

Future Plans

The original motivation for the measurement effort-to support research and experiments
with evolving technologies to identify effective techniques for particular environments—still
exists today. The process continues to evolve with the deletion and addition of particular
measures.

As non-productive measures are deleted from the program, paradigms such as
goal/question/metric are used to identify candidate measures for new studies.

Funding

Direct measurement is funded as a tax on programs. Development of the metrics process,
tools, and methods was funded by the agency's research element.

The resources required to specify, collect, and analyze measurement are:

» The collection cost itself has now been minimized. The cost of data collection is ap-
proximately 1%-2% of the cost of development.

» Data processing (maintain the database, assure the quality of the data, etc.) cosis
6%-9% of the cost of development.

+ Analysis (interpretation, reporting, and packaging; developing new standards, poli-
cies, and overall research) - If less than 10% of development cost the metrics effort
may be wasted; the cost can go as high as 20%.

» Total cost is on the order of 20%-30% of development costs.

The costs of the program may be considered significant by some, yet the return on the
measurement investment has been many more times the expense; that is, the savings en-
abled through measurement have far exceeded measurement program costs. Enumeration
of all the advances in software development made possible through this organization's
years of measurement experience is beyond the scope of this survey.

CMU/SEI-91-TR-16 33

The work performed by this organization has contributed to the technical growth of the soft-
ware engineering discipline. Its efforts led to the creation of a complete set of policies and
guidelines for software development and management for the organization, a practice now
common among software development organizations.

The organization's measurement efforts helped establish the value of code reviews, an-

other now common practice, in their software development environment. Other benefits i
include identification of specific testing methods, design methods, and “numerous other” .
software engineering methodologies that support their development efforts. !

Not only has measurement been important in establishing beneficial practices for software
development in general, but it has also helped tailor local practices to take advantage of the
technologies most appropriate for local applications, environments, and processes. For
example, independent validation and verification was dropped as a universal tool when it
was shown through measurement to be generally not cost effective in this organization’s
development environment.

Even individual process concerns have benefitted from measurement. When error analysis
indicated an excessive number of interface errors, an interface checker tool was obtained
and measures later provided feedback that proved the worth of the tool.

Lessons Learned

.

Management has always been supportive of measurement proposals that have a
solid engineering foundation; however, it has proven difficult to get busy managers
to operate a measurement program for themselves. Higher level managers have
grown more supportive of measurement lately with the attention and populanty of
Total Quality Management, process improvement, etc.

It has taken considerable time to convince practitioners that there is a need and use
for data collection. New programmers look on it as just “part of the job,” and are still
not completely convinced that measurement helps them. :

For the first 10 years, those performing measurement promised that practitioners
would benefit from the feedback they were to receive, but regrettably, even today,
there is still too great a time delay in feeding back results to the source of the data. '

Even though feeding data back to the developer is slow, management use of the
data in “real time” has proven extremely valuable in the planning, monitoring,
assessment, and contro! of ongoing projects.

As a result, managers have become convinced that measurement is a good thing.
The payback may be from costs avoided, but the major savings is from doing things

better.
+ Measurement efforts have contributed to software development in five important
ways. They:
1
1. Provide an important management planning aid.
2. Support process understanding.
3. Support development environment understanding.
4. Provide rationale for adopting a standard development approach.
5. Provide discipline to project development.
34 CMU/SEIS1-TR-16

b_._——_—s_——-—-——l—-*

- Unfortunately, project managers in other branches still wait for the software devel-

opment branch to do the measurement job for them. It is just now getting to the point) 1
where software project managers in other branches are beginning to handle their :
own measurement needs. '

« Few practitioners are self-motivated to the point where they see a professional [
benefit in @ metrics program. There was early resistance by a few, and significant re-
luctance on the part of many.

It is difficult for practitioners to organize goals for themselves. They need management to .
provide the leadership and the overal! picture, and then they need someone outside their
realm to analyze their relative success at achieving a goal.

Practitioners need:

» Measures defined (directed to a goal)
» Processes mandated (what is to be measured)
» Feedback on performance

There are two major problems: the definition of what the goal is (proper goals imply contin-
uous process improvement), and the timeliness of the feedback.

There is a lot of support for metrics at the site as long as the surveyed branch does the
work. Whatis needed is a simple way to transfer the program so others can apply it.
The branch is encouraged about the possibilities for transfer, but:

- Measurement has to be done (it has positive impact on the way work 1s done).
The transfer process will be long and gradual.
There will not be immediate payback.

An early concern was the place of software measurement in personnel assess-
ments. People were not convinced that metrics were not focused on individuals, so
the data are “sanitized"” i.e., no names or identifiers of people or projects are pre-
sented.

The noise in data and sheer volume will swamp any large effort to collect detailed
information. The greatest payback comes from the data that are cheapest to collect,
i.e., data that must be collected anyway for other purposes.

A simple start-up guide is the best way to get new programs underway. Managers
still need a cookbook approach.

There is another set of concems related to measuring contractors: !

- Who in the government or among the competition is going to see the data and will
that bias chances for other contracts? One attempt to monttor a metrics effort at one
contractor resulted in even the limited data drying up completely as a result of such
fears. '

- If a corporation gathers metrics data for its own internal use, what prevents a gov- ‘
ernment program office from saying, “OK, where's the metrics data?" Is it better not i
to collect data in the first place?

One of the big surprises was the complexity of the data handling, how difficult it was
to ensure valid data and to verify them. This is even true today with a reduced
metrics set.

CMU/SEI-91-TR-16 35

e e

A8. Case5 ,
Distinguishing Characteristics

This organization produces mission-critical software that functions in the field without de- .
fects. Its measurement program is an important factor in providing support for the tightly .
controlled development and repair processes required to produce software of such pre-em- .
inent quality. High quality is a conspicuous element of the corporate culture. Ty ;

What follows is the report of a senior systems engineer descrnibing his observations of the
nearly two decades of progress whereby software development evolved from “cowboy”
programmers and punched cards to a team-oriented, systems-driven application of state of
the art technology to address some of today's more demanding software problems.

Organization

We interviewed a group within a division of a large computer manufacturing and software
development company. The division is, and has been, devoted to developing and maintain-
ing software with extremely high requirements for safety and reliability. This particular
group within the division has 325 people working on software, which is down somewhat
from a program peak of 420 people.

Metrics History

The growth in the size and complexity of the software programs developed by this group in
the early 1970s forced a change in the way systems and system software were to be devel-
oped. The old methods that had worked well enough on small, relatively straightforward
project; were woefully inadequate for rapidly expanding and more demanding develop-
ment efforts. +

For example, just one piece of a project wound up running to 60-80 KLOC when the initial
forecast for the entire package had been only 25 KLOC. Massive changes to the original
specifications created the need for new development processes that could deat with pro-
grams with orders of magnitude greater size and complexity.

The changing nature of the work and how it was to be performed elevated the importance of
data collection to support forecasts for new products. Forecasting was not so difficult a
problem when products were small, but it became one when davelopers began to en-
counter large blocks of requirements changes on larger, more complex programs.

The assessment of issues related to such changes led to the recognition of two types of '
cost. The first, function-driven, was the cost recognized by the “old” methods and was re- i
lated to the functionality of proposed systems based on the level of understanding of the re-

quirements at the time of contract award. With programs experiencing hundreds and even

thousands of changes between the requirements baseline and initial operation, there arose

a need to deal with such change. This required a configuration management system where

each change could be assessed and tracked by the resources forecasted and consumed.

The second cost factor is a schedule-driven one resulting from maintaining the develop-
ment staff while other, non-development functions (e.g., end-user testing) are being per-
formed as part of the product life-cycle. The overhead due to the stretching out of
schedules must be added to the cost of a project.

36 CMU/SEI-81-TR-16

e ——

It took some three years of analysis for the organization to discover the dichotomy of
function- and time-driven costs. This was as much a revelation to this contractor as it was to
their major customer. To make this determination, they had to tie costing and configuration
management accounting together to get the consistency of data required to reveal the true
impact of change on development costs.

Recognition of these cost factors forced a redefinition of the accounting system. In the old
days, the size of the product in lines of code and in number of modules was dealt with as an
elapsed time problem in terms of milestone achievement and resources against a sched-
ule. Now, cost-oriented change accounting systems look at where the cost impacts are and
at what areas of development are affected the most.

The group had other issues to deal with in addition to change management and growth in
size and complexity. Meeting rigid product delivery dates replaced product definition as the
cost driver. To accommodate this new constraint, the organization began to develop soft-
ware in incremental releases. Partitioning the increments facilitated (a) more consistent ef-
fort and staff size, and (b) made it possible to get intellectual control over the various inter-
faces that modern systems developments must deal with, i.e., operating systems, service
applications, user interface management systems, etc.

If the evolving program management needs had not driven the move to a series of releases,
the complexity of dealing with multiple architectures (function, human-computer interface,
operating system, etc.) would have forced the change in process anyway. Even so, the first
major development effort using the process saw the initial plan for nine releases expand to
17 by the time the five year development project was completed.

Now, the estimation of costs attributable to function is fairly well established and schedule-
driven costs have been running about six times that of the function-driven costs. The exis-
tence and the size of this relation would not have become visible without a means for
measuring and tracking costs that is tied to the configuration management system.

In the early 1970s, costing plans revealed great differences in the estimated cost of
changes to products. This led to an effort to describe the development process in place.
The focus was on how work was performed and on how effort was related to cost, so that
bid prices could be made early regarding individual changes. When the transition was
made to incremental product releases, a follow-on costing effort was made to separate the
scheduling and development processes of the multiple, parallel efforts.

Now schedules are revisited at a high level every six months and are reconciled based on
the product, cost, and schedule. On a lower, project level, schedules are tracked monthly
with weekly tracking at even lower management levels. Cost and product measures are
also tracked at the project and sub-project level. This muiti-level effort allows for joint deci-
sion making with key customers. [n fact, the up-front marketing ot measurement efforts and
the results achieved by measurement application have contributed to a positive pro-
ducer/customer relationship.

A third aspect in addition to cost and schedule is quality. Since it is possible to meet both
cost and schedule forecasts without delivering a quality product, there was a need to de-
termine how to get a view of quality. The answer is in tracking defect reports (DRs) and
change requests (CRs). DRs were already tracked by the configuration management sys-
tem (no DRs are written before unit test since the cost of verification and processing is very
expensive) and differentiated from CRs. The need was to track both kinds of changes in a
consistent manner.

CMU/SELI-91-TR-16 37

[T

2 2

Coliecting large volumes of data presents new problems, however. Whereas cost concerns
are limited to collecting and tracking expenditure totals, people want to know everything
about quality, Something had to be done to help determine the areas of greatest return
when tracking quahty. If too much information is collected, it becomes difficult to distill out
the lessons. Fortunately, it turned out that the necessary data was being collected all along.
The need was not to collect more data, but to learn how to use the existing data in new
ways.

The first step was to track error counts. At the outset, there was a reluctance to track errors
that occurred early in the life-cycle. Programmers basically refused to do it (during inspec-
tions, unit tests, etc.). In the early, “campfire” days, programmers interfaced often, but they
did not call such meetings reviews, walk-throughs, or anything - they were just informal
gatherings to compare notes.

In 1973, inspections were formalized, and, to deal with the fear of ratings, managers were
banned from the sessions that were convened by formal moderators using a defined pro-
cess. Ultimately, the message was accepted that finding errors early was good, but still
there was a tendency to steer away from metrics.

In 1977-78, the division started collecting information on DRs (they had been counted be-
fore in the configuration management system, but the information was not used as an ana-
lytical decision-making too! until 1978).

Even with a redesigned development process and the means to track cost, schedule, and
quality factors, the group found that there was still more to be done. The added visibility of
product and process issues made possible through measurement unveiled still another
surprise: processes go unstable in the transition from development to operation and main-
tenance (O&M).

The processes that worked smoothly in the development environment were too long and
too slow for the operational need for rapid response in order to minimize mission critical
downtime. The shift from software development alone to development and production re-
quired a shift in process. This was the big gut-wrench for the organization in the early
1980s ~ learning to change their mode of operation while adhering to a schedule and yet
still maintaining quality. Forcing O&M to operate under a process designed for develop-
ment caused productivity to fall and error rates to rise. “Anyone who makes that transition is
going to lose it." Compounding the problem was the erosion of the project team's skill
base as developers moved on to other projects and those in O&M had to develop new
expertise.

Once the group had *been to the mountain” (error rates down, productivity up) it would not
accept lower standards. The effort began to determine what it would take to achieve their
development performance levels.

The production orientation part of O&M meant short bursts of program development in small
incremerts and resilience to change due to the emphasis on error detection and correction.
The need to rapidly produce operational increments mandated a change in environment,
that forced a change in process, that, in tumn, necessitated a change in process models.
The new model was established, predictions were made, the changes were incomorated,
and then data collection made the process visible. This {ed to an improvement both in the
O&M process and in the software produced.

38 CMU/SEI-91-TR-16

—— i et

S

Even with all the attention paid to downstream details of the software life-cycle, the group
also wanted to improve its efforts on the front end, in particular in the area of requirements
analysis. The result was that they added 40% to development estimates for the early life-
cycle activities: 20% for a requirements analysis group of experts to minimize the number of
errors that get into the system (including a help desk to make sure DRs are valid), with the
balance to increase inspection resources and the measurement effort to track inspection
resuits.

In essence, resources were shifted from other parts of the process (mostly from perfor- .
mance testing) to inspections, keeping the total project resources about the same. The ; .
customer was informed of this change in advance and provided support for the effort.

Current Program

Measurement covers the “Big 4” process factors (product, schedule, cost, and quality) as
the minimum set. The organization's method of assessment is to start with the product and
work toward establishing a schedule; then estimate cost and reconcile with the schedule;
then estimate quality and reconcile with cost; and, through cost, reconcile with the
schedule.

Coverage of the four factors must allow for project-specific concerns, the organization's cur-
rent state of knowledge regarding those concerns, and the organization's defined pro-
cesses. The biggest challenge is understanding the interrelationships among the four fac-
tors and the necessary trade-offs that must be made to achieve project goals.
Understanding these interrelationships and recognizing the separation of costs (into
function- and schedule-related) are marks of a mature process.

Fundamental to the use of measurement is understanding what data must be collected.
This organization identifies three classes: data that are used on a regular basis to provide
insight into the software process and product status, data that might be needed to provide
additional insight into areas of concern flagged by the standard measurement proc. s, and
data that can help explain how a process or product problem slipped through the
measurement process without being flagged. To collect enough data without swamping the
system is yet another trade-off issue.

The measurement program now in use is a result of the organization's own experience and
its assessments of other programs. Much of what they are doing is a style of statistical pro-
cess control based on a sampling of the data they collect (they almost never look at all of
the real data). They take the samples and compare them with model-generated bounds.
Key features of the measurement effort revolve around managing and controlling software
processes, changes, and errors.

The focus on process and models (noted in the History section) is reflected by the influence
of the measurement effort in a number of other areas. Change and the effect of change on
the project can be predicted and assessed because the configuration management system
is tied to cost accounting so that the various components of cost can be forecasted and
tracked. The configuration management system is custom-built and provides tight controls
on baselined products to the extent that code cannot be modified without being tied to an
approved DR or CR.

Measurement insight and configuration control are both necessary to manage software
processes. For instance, tracking effort and managing to a schedule has revealed that the
required O&M staff level for critical skills is 60% of that for the developiment phase (for this
group working on this application in this environment). O&M staffing demonstrates a

CMU/SEI-91-TR-16 39

L —

Rayleigh distributed front-end and a slower fall off than that of straight development. Only
after the inflection point is passed is if possible for O&Mto take on new work for the project.

Handling errors is another area where measurement has proven hypotheses regarding
methods and processes. DR action involves everybody on the project. It is expensive, and
management has to really want defect data to start collecting it early in the life-cycle. One
focus for the organization is the forma! inspection process, which has received high visibility
due to its very high return on investment. As a result of the insight provided by measure-
ment, the formal inspection process was tuned and formalized. Now, 85-90% of the errors
found are discovered during formal inspections and unit test. 'Due to the relative lack of
static errors, integration testing can be more.focused on substantive problems.

Our source viewed these surrounding factors as placing this organization “in a different ball
park” from most other software operations. He said that their cost to develop code is lower,
as are their back-end maintenance costs, and that the organization’s quality and attendant
customer satisfaction is higher. Not only have these changes contributed to a higher quality
product, the shift in resources from the old model to the new has allowed the improvements
to take place without adding to the costs for development and test, while the maintenance
bill has dropped 30%.

Future Plans

An important issue is strategic planning. The site managsment thought it knew how to per-
form strategic planning until a site study was condutted and could not identify organiza-
tional/structural relationships. They then built a model to represent the structure with the
goal! of building a dynamic tool to mode! and evaluate the organization's effectiveness and
the quality of its products. There are no process measures in the model, just product or in-
terim measures. There is a lot of emphasis on measures used to perform the development
and maintenance work. Now they are building an expert system to score an organization
based on the model of processes used and how the model is applied.

Other future possibilities include:
+ Examining software reliability forecasting and comparing results with Musa et al.
+ Making risk analysis more quantitative.

= Improving resource assessment, i.e., factors such as skills, tools, size, and central
processing unit capability and their effects on cost, schedule, and quality.

« Hypothesizing about a possible Level 6 and beyond of the five-level SEI software
process maturity model.

The success of the measurement efforts to date and the visions of possibilities for the tuture
have made it difficult to keep the appetite for data in check. The gioup is constantly re-
evaluating what the next important piece of data needs to be.

Funding

When asked how much the measurement effort cost, the response was, “One cannot man-
age without it. Though people try, they just can't afford not to doit. Most of the data needed
should be collected for other reasons anyway, like configuration management data, inspec-
tion data, etc. Over the long haul it's cheaper to have the data than not to have it." It results
in meeting schedule deadlines by finding problems in time to do something about them,
that is, fixing them early, before they get out of control.

30 CMUISEI91-TR-16

“The point is that this data has to be collected anyway for people to do their jobs. One may
have to tailor the data for measurement purposes, or one may have to help format data, but
neither has a great impact on cost. There is a lot of data from people in the project office,
from configuration management and inspection data, and from people already in the loop.
There is a lot of interconnection here. Most of the data comes out of tools that have to be
used anyway.”

'
—
b e —————————

Lessons Learned

« The biggest surprise was in understanding the separation of the types of cost
(sc' edule driven vs. function-driven). In 1976, neither this contractor nor their
¢ .tomer knew of any such separation. To that point, software pieces were broken up
and dealt with on a small scale by small teams-“campfire” problems. It was easy to
establish intellectual and management control because the products were small and
all under the same second line manager.

The second shock was that DRs have followed a Rayleigh distribution, plus or minus
10%. This allows flags to be raised when a swing in the data is substantial in either a
positive or negative direction.

“Iit doesn't take a lot of data to tell us a heck of a lot. it's the time element that tells the
story-it ties errors to schedules.”

The biggest measurement payoff is the improvement in the process, and this was
shown early in the program. Measurement showed the need to spend more time on
formal requirements, design, and code inspections, to use more people during de-
velopment, and to add more testers.

The place to insert technology is into a stable process base. Then you can evaluate
the effects of the change.

One cannot “ump start” a culture by mixing process veterans with new people. A
mixed crew will force a backing off from cost and quality modsls, but it will not take the
five years to establish a project culture that it took this group since the target mode! and
some expertise are already institutionalized. “For a whole new crew of people, we
would still be looking at a five year self-internalization process.” Where a new project
falls in the 2-5 year timeline is a function of a number of factors, including the
experience carried over from previous projects and processes, and the magnitude of
the new undertaking. '

The group's application domain is complicated and its constraints are demanding. The
necessarily disciplined structure can crush the great workers while it stretches those of
lesser abilities because the interfaces between the pieces have to be maintained. The
key is finding good people who are creative within bounds. The tough part is
preserving the process with those who remain while at the same time orienting the new
people as they join the group.

What was once a mystery is now much more visible due to: establishment of a cost
accounting system, creation of a state-of-the-art configuration management system,
and setting up a schedule impact assessment system for incremental releases.

-

e e et el o A

CMU/SEI-91-TR-16 41

N |

A.8. Case b

Distinguishing Characteristics

This large project is on time and within budget, even though there have been many user {
changes. The overall software architecture, project management approach, and life-cycle
definition were completed before work on the project started. Risk is managed explicitly; the
riskiest aspects are identified and explored first. -

Organization

This is @ major DoD project in the defense systems arm of a major aerospace firm. At award
it was estimated that the project would take 38 months to develop approximately 325,000
source hnes of Ada. About 75 professionals are assigned to the project.

Since the project was primarily software development, a deputy program manager was
designated to oversee the software effort.

We spoke with the chief software engineer (indicated by a darker box below). Before prelim-
inary design review (PDR), the crganization structure was:

Deputy
program
manager
for software
Software Develop- Test
engineering ment es '
-1 Metrics - Requirements)
Design & verification
development testing
Process
(| & tools 5
esign - i
‘ integration Build - ?
Foundation testing ;
[—] developmen |
‘ Testin _ !
Sof 9 Configuration
| | Software management 1
architecture
& design
Require- Devglg;rtnenl
ments facilities

Figure A.6-1: Organizational Structure before PDR

42 CMU/SEI-91-TR-16

Lgﬂggggg_-—-_——_-gh

[T RO R—

After PDR the structure is:

Organization
t

Deputy

program

manager

for software Chief
software
engineers
I |
Develop-
ment Test

Figure A.6-2: Organizational Structure after PDR

CMU/SEI-91-TR-16 43

Matrics History

easuremant began as a2 goal of 2n tiemal resezrch ad development (IRAD) p:qed the:
sought a more rational software cevelopment Ee-cycle, one ctven by pr
(i.e., the spiral modzl). This 3-year, 15 lzbor-year effoit dzveloped a software Eac/de
deﬁniﬁon and process mode! that included diverse measurements as integrel project
control and managemant feedback mechanisms. The IRAD project 2!so Cavelopad the
software architecture appreach and some of the reuseble Ada components that the major
project is using.

Current Program

All measurements are collected with very Etle direct praciitoner sivolvement. Labor hours
are collected by the time accounting system; the project wiork brezkdovm struchiwe (WBS)is
coded on the time cards so that practitioners can account for their kzbor by W3S itam.

Ada is used zs the program design languzge. A special kind of comment staiement
indicates how many source lines of Ada this design element will tzke. As the design is
coded, the correspondence between the estimate and actual can be tracked.

The chief engineer and his staff took about two Izbor months to define the mekics repoit
formats and generation capability and then about six Izbor months to develop data
collection tools. To actually collect and display the metrics, a technician spends about half 2
Iabor month per month performing data entry, and then the program manager, deputy
program manager and the chief engineer spend an aftemoon analyzing the data. Six sub
project managers also analyze the reports prior to higher level reviev.. The managers each
spend about 1/2 day for their review and analysis ~* *1eir inputs to the reports.

The project uses an incremental build approach, so multiple builds are in progress at any
one reporting instant.

4 CMU/SEI91-TR-16

The folowing arees are reporizd o

» Stzfing profie, planned vs. ectua)

« Persamnel aitriSon and adction hislosy

» Size of softnere, planned vs. actual

» Size of toolgenerated reused and newly developed softwere

« Complexity

- Development progress summary (build content, celendar progress zgainst mile-
stones, percent developed, percent tested, number of sofiware development folders
docurrented), planned vs. actual

» Detz?lad development proaress for ezch CSCI and build, planned vs. actual
- Software requirement verification summary planneo vs. actual
« Softwase problem report status: total; now open or closed; by age; and by sub-

= Softwere aschitecture stebiily

- Scitware reliability testing progress

« Development and tasget computer resource utiization
- Program volatiiity

« Incremental release content

The measures are reviewed monthly, and they are presented in total, in a written monthly
report. This project is, and has been, on schedule despite the fact that requirements have
changed moderately.

Future Plans

The firm is trying to attrtact new business that will use this life-cycle model and its concomi-
tant measurement elemants.

The firm is also contemplating additional automation, especially that of integrating the col-
lected cata into printed reports.

An additicnal set of measures is being introduced to evaluate ease of change as an indica-
tor of rework and maintenance expense. It will measure ease of change by precise defini-
tions of modularity, changcability, and maintainability.

Funding

The software life-cvcle approach, its measurement emphasis, and the overall software
architecture development was funded as internal research and development. The
architertural specifics and the metrics definition, implementation, and operation were
funded by the project.

CMU/SEI-91-TR-16 45

e

Lessons Learned

Measurement has provided feedback in time for 2n early response to development
problems or changes in project requirements. These changes have included modi-
fying the project plan.

Measurement has been well-accepted by practitioners and sub project managers.
The measurement system has been used to surface problems to management in a
non-afiributive way, and practitioners have used measurement information to
support their arguments for certain process changes and for communicating
progress or issues. Measurement information allows for meaningful dialogue
regarding manzagement decisions so that all affected parties understand the
rationale for such decisions.

Measurement has been an effective, uniform way to objectively characterize and
explzain the benefits of the new life-cycle, especially to the govemment program of-
fice and its support staff. The increased uniformity and objectivity of communication
has been reflected in increased team morale, re-work avoidance, and improved
customer openness, trust, and rapport.

The key success factor was getting people to believe in measurement. A few cham-
pions were enough in this organization to get things moving.

In the future, measurement might be done viith two sefs: a standard set that all
projects use, plus a set taflored to the needs of a specific project.

The project provided tools to minimize the impact of the measurement effort on the
day-to-day work. One zsitical need was the requirement for a standard automatic
line counter which recognized the syntax of Ada and its use as a design language.

Customer program office support was critical to the measurement effort. They did
not mandate specific metrics, but permitted the contractor to choose the most
meaningful set and let it evolve over time.

Their attitude: if we er, just let them know and they will try to fix it. The worst is not
knowing that one has erred.

Metrics can help explain what is going on in a software project. Exactness of the
the data is not critical for such insight; exposing relative trends can be of great
benefit when trying to understand and evaluate project related issues.

To avoid the Babel effect of a plethora of measures, use a core set of measures xith
others added where the situation merits.

The practitioners have been involved in the collection of about half of the metrics
information. The rest was automatically and transparently derived.

Metrics enhance the mechanism for accountability. Since metrics are objective and
consistent, performance comparability across the project is enhanced. This is easy
to accept by the better performing project groups, but hard to accept by those that
are in trouble.

Project review discipline and standards are necessary to ensure objectivity and
consistency.

48

CMU/SEI-91-TR-18

[

A10. Case 7
Distinguishing Characteristics

This organization has steadily increased its software process maturity. Improvement is part
of the division's “corporate culture.”

Organization

This divisicn is one of several in a large aerospace and defense firm that concentrates on
real-time, mission-critical, embedded computer systems for the Department of Defense and
related sponsors. It is a matrix organization with software professionals supplied to projects
operated by other divisions. Negotiations with other divisions for resources are conducted
at the senior management level. The division has about 500 software practitioners nows
(dovm {rom 1,000 three years ago before the divisicn was split in two).

An average software development effort requires about 30 software professionals working
under an software project leader to produce a 200 KLOC program.

Corporate software initiatives are undertaken by interdisciplinary groups that look at corpo-
rate-wide opportunities for improvement. Major goals at present include centralizing cost
estimation and earning a higher SEI software process maturity level corporation-wide. The
maturity level itself is a metric and a goal in the corporation's continuous measurable im-
provement program.

While the division has a strong rating based on the SEI maturity level yardstick and two
SEl-assisted assessments, other divisions in the corporation have not yet achieved the
same level.

Metrics History

The division has been collecting metrics since 1972. The historical file of project data is
mostly on paper. There has been an effort toward automating more of the data collection
process as the group assesses what data are being collected and why. In 1978, the
measurement program was codified in division-wide standards for project reporting as a
result of thair experience during the first five years of their metrics effort.

Although project data reporting standards are continuously improved through individual
improvement suggestions, in 1985, the division re-evaluated their project data collection
standards and further refined them through a formal review process. They are now
undergoing a third major evaluation of the standards as part of a quantitative process
management inibative. Recent emphasis has been on error, productivity, and complexity
metrics.

The division started working with quality indicators as part of a statistical process control ef-
fort five years ago. They were not certain where to focus their efforts, so they took a shotgun
approach: each department did what seemed reasonable. The focus was on errors, but the
results were inconclusive due to differing definitions. This situation inspired a move to
standardize the program so that the usefulness of the error data—limited due to the rela-
tively small number of data points in each project—could be enhanced by a division-wide
database.

CMU/SEI-S1-TR-16 47

Historically, senior management analyzed measurement data to ascertain project health. ;
For the first 15 years, the reports went to the division manager. In the last five years, the re- f
ports have been going to the lab managers, and the division manager conducts project re- :
views quarterly. . !

The division-sponsored Software Quality and Productivity Program studies tools, methods,
and other technologies for applicability to division projects. As a result of this program, the
division has been able to reduce its bidding rate (cost to perform a given amount of work)
by 15% three times over the past 10 years (approximately a 40% drop overall).

As is typical of a matrixed organization, there are barriers among the haidware, software,
and systems engineering staffs. Breaking down those barriers—a long-tena endeavor not
directly related to measurement-helped create a more cooperative environment, which
encouraged resolution of process problems.

e M e m we

Handung a rising volume of project changes resulting from increasingly complex software
projects and from maintaining operational programs became a major problem in the 1970s.
They have been so successful in addressing process issues that they can handle the high
volume of follow-on business they are asked to perform. Despite the inevitable changes
that come with such work, the division still performs to a cost performance index of greater
than 0.97 (i.e., within 3 % of the planned cost to develop the required software functionality).

Current Program

The current measurement efforts are based on the results of a 1990 SEl-assisted
assessment and are directed toward improving and consolidating the division-wide
program.

An effort 1s underway to review the metrics program from the standpoint of how it supports

business objectives and to automate project data collection to help reduce the drudgery

required to support a centralized database. A central service for sharing resources has s
been established to provide support for the data collection eifort. This facility was
established partly due to problems with data collectors frustrated by the amount of work
needed to gather all the required data.

The practices and procedures for software development have been written from the stand-
point of and for the software project leader, the person responsible for software devel-
opment (there are 20-25 software project leaders in the division). The division also has
standards for the 20 monthly reports.

The division requires measurement data to manage projects. The software project leaders
have acceptea the value of measurement and accept the practice as a way of doing
business. Measurement helps provide them with the foundation for making decisions
based on solid information. As part of the measurement effort, division practice calls for
project management presentations to let developers know at least in general what the sta-
tus of a project is and how measurement is used to provide that visibility. '

The general acceptance of measurement by software practitioners “in the trenches” is very
good when they are shown why it is being done. There is a distinct culture in the division
that supports improvement efforts, and the continuous measurable improvement program
was created to formalize this goal of improvement and to focus software project leader
efforts to sustain process improvement.

48 CMU/SEI-91-TR-16 |

—_—

[y

[

Maintaining the improvement mind-set as a group culture is more difficult with software
engineers who are now widely dispersed geographically throughout the division. The
review and upgrade of a common set software development practices is one mechanism to
reinforce that culture. “Culture” has been the biggest retum on the process improvement
investment because it encouraged the team feeling of mutual support and direction that is
the foundation for any improvement effort. .

Having spent so many years (about 20) working toward achieving a culture focused on
continuous improvement, they do not see many surprises anymore. “We are in a continual
process of change. It's part of the job. Sometimes we don't understand things, so we go
find out why. Usually it's due to little glitches. A well-run business doesn't have big
surprises.”

One manager was asked what he wouig change about the development process. He

responded, "Nothing. [have everything under control. Everything | would change is being
changed.”

Funding

Funding for project measurement collection, analysis, and reporting is included in project
bids as a normal part of the effort of the software project leader. Since a software project
leader is required for all software projects, and since data collection and reporting is a
requirement of the software project leader’s job, then measurement is always applied in all
software projects. The organization-wide quantitative process management program and
database cost is approximately one and one-half people carried on overhead as a general
service available to all projects in the divisicn and is charged to the customer as overhead.

Assistant program managers spend about 10-15 hours per month producing the monthly re-
ports (this is just the time taken to update the previous report; the initial report takes longer).
Assistant program managers also spent another 10-15 hours per month working with mea-
surement. The finance depariment spends about five hours on the earned value report.
Lab and project managers and 2-3 others spend a couple of hours reviewing the reports. 1
1/2 people are working on the quantitative division-wide process management service and
are divided among ali the projects. Senior managers review all projects {using a report
subset) every month.

Future Plans

A look at productivity is one of the retums of the data collection effort, but the organization
does not view productivity as an absolute measure nor as the ultimate goal, but rather, the
eftect of continuous process improvement. Improving the organization's process maturity
reduces the risk of performing to planned cost and schedule (they use the cost performance
indicator as their primary risk measure).

Other future goals include using measurement to assess the effect of changes to process.
“It's a good thing to do; we just haven't done a complete job of it.” The work done to date
has been with models, not with collecting data. They have been using surveys to indicate
trends.

CMU/SEL-91-TR-16 49

As the continuous measurable improvement initiative is gaining ground on a corporate
level, teams within the division are looking at process changes and the measures needed
to assess them in a quantitative way. Every software practitioner in the division is on at
least one continuous measurable improvement team. Approximately 50 teams are looking
at process issues and at which metrics are required to measure effectiveness.

Lessons Learned

.

“To be a software process maturity level 3 organization, you have to have reached
the point where process, measurement, and improvement are part of the culture,
where standardized processes are used on all projects and are accepted by all
practitioners. Maybe it doesn't take 17 years to establish a measurement program
and design the data reports, but maybe we needed that tin e to establish the culture
to accept data collection and quantitative process improvement as an effective way
to run a software business.”

“It is not so great a task to accomplish these things for projects, but doing it organi-
zation-wide takes much longer. Attaining software process maturity level 3 across
the organization is the goal, not just on a project. This will require a transition pos-
sible only through a change in corporate culture. This includes the orgznization into
which the software group is embedded. It might take two or three years to define a
program, but it takes many more years {o establish a cuiture.”

Measurement is an integral part of that process.

Productivity gains, made in part as a result of the information made available
through measurement reporting, have been significant. The group cost perfor-
mance index, defined as the budgeted cost of work performed divided by the actual
cost of work performed, is now .97 (as of March 1990). This is due to good es-
timates, to knowing what resources the job really needed, and to a good process
with controls to ensure it is carried out effectively. The move to .97 from the previous
.94 level took two years, and was supported by the use of rale charts to show
planned completion and eamed value tools to track the percentage of completion.

“We are successful because of our process. If our budgets are cut on a project bid,
we will have to cut function in order to implement a good process. When the debate
goes up a management level to rectify differences, we will win because senior
management doesn't want a software crisis. If you take process measurement
away, you can save the cost of the reports, but you will pay for it with surprises
during development.”

.

.

.

50 CMUJSEIS1-TR-16

A.11. Case 8
Distinguishing Characteristics

This organization has been reducing its measurement program that has been in place
since the mid-1980s. The measurement effort was initiated as part of an ambitious effort to
make several significant changes in the way this division develops software. Problems re-
lated to the use of both inappropriate software development methods and programming
language for the division's applications have had a negative impact on the perception of
measurement.

Organization

This organization is a division of a major electronics manufacturer. The division makes
electronic instruments that have a number of civilian- and defense-related applications.
The instruments contain computer programs. In the beginning, the programming effort was]
limited and almost entirely devoted to firmware. Now, half of the group's work is software- : |
related.

Since their products are not produced in high-volume, the division must devote consider- ,
able attention to both their R&D and their manufacturing processes to produce quality prod-

ucts znd still earn a reasonable profit. This market-driven focus on process has elevated 1
the concern for quality to the point of religion.

Metrics History

The division was aggressive about developing new products and gaining market share in
the mid-1980s. The staff wanted to do good work, but they were unsure how to address the
problems they were experiencing. The need to gain visibility into their development pro-
cesses was addressed by a product development manager who initiated a software
measurement program.

The measurement effort began in earnest in 1986 when the group designed a metrics-
driven hfe-cycle. The product development manager at that time was an aggressive,
analytical person who had a strong data-driven view of the life-cycle, and was concerned
about schedule slips that sometimes reached 100%. Pan of the slippage problem was due
to the transfer of some prejects to a new site, but a more fundamental problem was that the
management process produced poor project estimates.

e = e a— e

The measurement program started with two engineers, some staff support, and a statistician
(he was a big asset, but was sometimes overly focused on deatailed analysis and micro-
decisions). They used some “accepted” measures as the foundation. These were
supplemented by additional measures based on a new software life-cycle model being
initiated at the same time, and other measures developed by other divisions and corporate
engineers. Some people wanted even more information then, and that desire still exists
among some developers today.

*lot only was the measurement effort tied to the implementation of a new life-cycle model,
but also at that same time a move was made to use an object-oriented language. i
Ambitious new projects staffed with young engineers using new tools and a new language

created a prime opportunity for failure; several projects indeed suffered significant

increases in schedule, staffing and feature set beyond expectation.

CMU/SEI-91-TR-16 51 i

I———————————————————————

The new language combined with the new life-cycle did not permit flexibility in the devel-
opment process. Engineers needed to do more prototyping than called for in the new life-
cycle, but they did not convince upper management of the need. It was not that the im-
provements were the result of poor engineering; it was that they were made too soon,
before the engineers were ready to implement them.

In addition, measurement output consisted of a thick, monthly report long on data and short
on analysis that was sent to all project managers and the aforementioned development
manager. Routing incompletely analyzed measurement reports to inappropriately high
management levels was of little use in dealing with the problems caused by the new fife-
cycle and language.

The fallout from these problems was that measurement carried some of the stigma of failure
attributed to the new development life-cycle and the new object-oriented language.

Despite this situation, measurement remained a major effort in the division until 1988, when
a switch in management occurred and a more intuitive, people-oriented development
manager took office. Gradually, support for measurement was withdrawn, and a new push
for project manager empowerment was initiated.

Measurement had been tainied by:
« Association with life-cycle and language problems
+ Being imposed from above by a top-down management structure
« Lack of promotion among the supervisors and engineers “in the trenches”

» Overemphasis on data collection that the limited analysis resources available could
not hope to evaluate

* An incorrect belief that it wou!ld be used as an evaluation criterion

Accordingly, there was Iittle, lasting grass-roots support to maintain the program. Thus,
much of the measurement effort was transferred to the quality assurance group.

There were a number of additiona! factors that contributed to the cutbacks in the program.
The limited belief in measurement's potential to solve technical issues and the fact that the
managers and engineers in the metrics support group were younger and less experienced
than those working in project development countered strong, widespread support.

Another obstacle was that the use of measurement was viewed as intrusive in some areas
and inappropriate in others. For example, @ measurement program experiment with turmoil
measures (that is, @ measure of change) was dropped due to a lack of beneficial results.
They had more success with process measures that helped determine where the failures
were occurring.

Despite the problems encountered during this ambitious attempt to improve development
capabilities, there were some important payoffs from the measurement program. Process
understanding made possible through the visibility provided by measurement allowed them
to improve the way they developed software. They found that making macro changes to the
process were more beneficial and easier to assess than micro changes. Scheduling and
testing both improved. Measurement improved performance in the short-term and provided
the rationale for the database of histonical performance.

52 CMU/SEI-91-TR-16

Current Program

There are several factors that have contributed to the focus and emphasis of the current
measurement program. The new manager is less data-driven and more intuitive, and proj-
ect managers have been granted free rein to use the measures they want. As part of their
new empowerment, project managers have a lot more control over product definition
(functionality tradeoffs), scheduling, and staffing decisions where previously they only had
control over staffing. Top-down management directives are no longer a fact of life, and
project managers are a lot closer to meeting schedules.

About 30% of the measurement program staff has survived the program redefinition. Much
of the original work has moved into the quality assurance (QA) group, especially defect
analysis. Measurement had a powerful impact on the concept of what quality is. Before the
change, there was little empirical determination of quality in terms of when testing is con-
sidered finished; in part, this was responsible for dragging out the testing process. Soft-
ware testing is still intact, though no longer driven strictly by numerical software reliability.
There had been over-testing due to a lack of understanding of the process.

Schedule estimation and measurement shill nzed to be improved, and focusing on time-to-
market did make the issue visible. Now, the division has lost some abilty to evaluate im-
provement efforts, especially in a comprehensive manner; and from time to time they march
in the wrong direction in their continuing effort to improve. Because they don't budget the
resources to do all the tracking/evaluation they need to do in the measurement arena, they
cannot always tell if they are doing the right things.

Despite the cutbacks in the measurement program, there has been a major payoff in that
the dwision has been able to improve its development environment, and project managers
have been empowered to do a better job of project management. Gains made in process
understanding are a particular source cf pride. It took five years for project managers to
understand what measurement information they needed. Now the focus is on determining
the needs of the engineers. The problem is finding the project resources required to deal
with all the issues being raised. Currently, issucs are being addressed based upon a
Pareto analysis of obstacles, with the highest priority issues receiving attention and
resources.

Most measurement is well enough embedded in QA and appears sufficient to maintain cur-
rent quality levels. The division knows where it is in terms of quality. There was no ques-
tion of support for continuing the measurement effort. The question was where to put it.
They claim that the payback has been tremendous.

The indwidual in charge of the division's measurement program has spent considerable
time analyzing the corporation’s experience with measurement {a task assigned by a corpo-
rate cepartment). He concluded that “the need is to understand the process first, then push
into goais. This is a human loop. Until you understand the process, you are going to do the
wrong things. The scary thing is that you will often see short-term gains (from bad deci-
sions). Fundamental change takes time. You can see some real retumns in approximately
three years when behavioral change begins to take place.”

Such behavioral change is a result of the greater insight into factors that impact develop-
ment efforts. Management no longer piles additional resources onto troubled projects.
Now, management terminates programs early if projections supported by histoncal data
indicate a poor or risky return on investment. Though scheduling is still something of a
problem, they have developed new ways to apply schedule information, and they have
made improvements in their ability to estimate effort using “estimation quality factors”.

CMU/SEI-91-TR-16 53

s A So————

o o o S =
o e ——————————— o S S1dr

Progress has also been made in modeling defects, establishing release cnteria, and mak-
ing time-to-completion estimates.

Future Plans

Redefinition of the measurement program has begun. “We damaged our credibility and now
we are redefining what we want to accomplish.” The snapshot gains of the past are being
consolidated as project managers assess their own measurement needs and as staff engi-
neers put together a small, basic program to be applied group-wide.

This time around, less emphasis is being placed on productivity measures. While they
were useful for making inferences about process areas to investigate, they were less useful
for making improvement decisions. Another set of measurements found to be of limited use
were turmoil metrics (a lesson learned). The new program will draw on both local and cor-
porate-wide experience and expertise, and some new initiatives will be undertaken in re-
sponse to the requests of project managers for more data.

Lessons learned

* The top-down management style was an impediment in at least two ways: in the
push to get working leve! engineers involved in measurement, and in getting infor-
mation to the people who are close to the work.

+ The top-down management thrust was an attempt to deal with major problems in a
big way, but the magnitude of the changes initiated were beyond the division's cap-
ability to evaluate and control. So much data was gathered that there were too few
resources left to perform analysis. Those tasked with measurement responsibility
did not do enough of a saies job at the practitioner level. Because they did not
make use of all the data being collected and they did not work at developing support
among the developers “in the trenches,” the support for measurement was limited
when the change in top management occurred. i

* The wide distribution of monthly reports meant that people at all levels received a lot
of information that was not pertinent to their needs. This often left project managers
anxious as senior management reviewed reports loaded with data but short on
analysis.

« The following lessons were learned from the quantity of data vs. analysis:

- If you confuse people receiving measurement reports with too much detail, you
get mayhem. The most successful division programs did the best job giving the
right information to the right people.

- Project managers need information to facilitate their management and control,
and section managers need overall process-not project~information.

- Only provide the information that the individual manager needs, but beware of
giving too little cetail as wall.

- Credibility is always an issue with measures. Conclusions drawn from
measurement information have to be put in context by the judgment of
knowledgeable practitioners.

+ To get change accepted, two things are required: top management support and
grass-roots acceptance. If those responsible for measurement had it to do over
again, they would establish more ownership and communicate more results back to
the project teams and de-couple the measurement effort from other, potentially con-
troversial changes. By establishing the program on its own merits and managing it

54 CMUJSEIG1-TR-16 i

e ————————————————————————

as if no senior management support existed, more of the program could have been
retamed.

« You can do all the measurement you want, but you must focus on your process first,
and this requires a lot of up-front work. You can really help the working engineer if
you can improve the manager's decision-making process.

« Some measurement observations: !

- In response to a question about program cost: “There are some things you
ought to do even when times are tight.”

- “Measurement always, always shapes behavior.”

- “You need to reward good measures even if they display bad results. Don't
penalize the truth.”

- “Don't make measures a religion. They are a means to an end, not an end in
themselves.”

- “Managing with bad information 1s worse than making bad decisions based on
good information.”

CMU/SEI-81-TR-16 55

A.12, Case 9

Distinguishing Characteristics
This organization’s measurement program has been designed for tailorability based H !
loosely on software engineering process maturity, as defined by the SEI. Tools provide !
automated support to the measurement program. The measurement program is stll i its
infancy, yet it has already achieved some successes in pilot applications.

Organization

This organization is an international feader in information and communication systems and -t
services. It is composed of a number of semi-autonomous independent business units that t
contribute to a corporate R&D effort mainly focused on near-term solution of technical prob-
{ems encountered by those business units.

Much of the scitware work performed by the business units is in maintenance and integra-
tion of purchased software. Most projects are fairly small — a maximum of 30-50 program-
mers per project ~ and the resulting computer programs are typically tens of thousands of
lines of code.

The executive vice president for technology provided a big push for establishing a recom-
mended set of measures, but the corporate structure with its heavy representation of in-
dependent business units mediated against any top-down measurement mandates. The
comorate R&D group has taken the lead in making a measurement toolkit and corporate :
database priorities.

Metrics History

Measurement became a corporate spensored activity with the creation of a corporate Soft-
ware Engineering Laboratory (SEL) three years ago. The SEL was created with a four-
pronged focus on process, measurement, reuse, and tools/environments. The measure-
ment focus was mandated by the executive vice president in charge of a new facility.

The first task for the measurement group in the SEL was to look at both what the individuat
business units needed to measure and how they were developing software. By coupling
the two views into a single process view of measurement, they have been working to tie
measurement to the needs of the business units. The plan is to match measurement efforts
on projects {o the software engineering process maturity of the development teams.

There were a number of reasons for tailoring the measurement effort to the process maturity
of the project. Tailoring would minimize the overhead cost of measurement by restricting
the scope of the effort to that which could be beneficially utilized at a particular project's
maturity level. The clarity and usability of the data collected would be enhanced by avoid-
ing data that is not applicable to the current maturity level. Tailoring would allow the ability
to use measurement to grow with the maturity level.

From May 1989 to January 1890 a recommended measurement set was developed from
interviews with the business units and contractors. In December 1989 and January 1990,
the structure of the measurement program was established. The effort toward program
definition was supported by an investigation of measurement programs outside of the cor-
poration in order to provide a competitive benchmark for the program.

56 CMU/SEI-81-TR-16 |

W

Since January 1990, a major focus has been on tool evaluation and toolkit development for
measurement program support. Pilot projects for testing the measurement program were
selected from areas that had shown interest and support for measurement, and where peo-
ple had been looking into measurement themselves, Other positive signals for possible
pilot efforts were developer process improvement efforts and recommendations of the
corporate process group.

The need to demonstrate success in these early measurement programs was doubly impor-
tant since there were some field engineers who viewed the SEL effort as little more than an
academic exercise. Now that measurement has begun delivering on its promise, more and
more field engineers are requesting assistance from the corporate group.

Current Program

The measurement effort has been receiving steady management support since its inception
two years ago. Much of the effort in the initial year of the SEL was spent seeking out the
nght individual to head up the measurement part of the program. The pilot projects chosen
for initial measurement applications were specifically selected for their high probability of
success based on local support and manageability of the measurement task.

There is a continuing interchange between the process and the measurement initiatives of
the SEL. That is why tying measurement to process maturity became the means selected
for the corporate effort. Tailoring measurement to process capability is only one factor the
corporate group has had to dea! with. The comparatively loose comporate structure likewise
dictated that measurement be flexible enough to accommodate local preferences of widely
dispersed software development teams. For example, the program had to be flexible
enough to support one group that uses function points and another that uses lines of code
as the basis for estimation. The concern that practitioners have access to tools and
methods they are comfortable with is indicative of the SEL's conscious effort to avoid the
appearance of an academic, research-type facility.

That measurement is finding acceptance in the field is reflected by the fact that the corpo-
rate group has far more work than it has time to do. The group is getting many unsolicited
requests for help via word of mouth, and its budget requests are getting approved intact by
senior management that has been hearing about the measurement effort from the business
units. in fact, the demands for assistance from the business units have expanded to the
point where the corporate staff is spending almost all of its effort to support them. As a
result, the corporate group is experiencing a shift in roles from technologists and
researchers to that of advocates in search of establishing measurement as a standard item
in project planners' budgets.

An active promotional effort has assisted the introduction of measurement technology
throughout the corporation. One means has been via the corporate newsletter. Another
has been SEL workshops of 60-75 people brought to the facility for 1-3 day classes, part of
which is devoted to metrics. Other publicity is done through technical reports and travel to
the business units.

For projects at the initial maturity level, size and effort measures are collected to establish a
performance bassline for development. Size is measured by lines of code or optionally in
terms of function points or object counts. Effort is tracked by person months. These
measures are mandatory for all projects.

CMU/SEI-91-TR-16 57

In addition to the ebove, the malunily level two mezsures include the aumber of project re-
quirements, budgeted and actual costs. parsonnel experence and expertise, and
schedule-related measures such as time spent on majer activities. These measures ére
targeted to basene general development preductivity end are strengly recommandad for
afl projects.

Level three measures a2dd tracking of the complexily of intermedizte producis and the at-
tendant quality of those procucts (compleleness, consistency, elc.). These measures indi-
cate the likely quality of the produrt 2nd are a'so strongly recommended for 29 peojects.

Level four measures focus on the development process in the areas of reuse, special tach-
niques or methods, efc. The measures to be applied &t this level are to be defermined
tarough consultation with corporate metrics personnel. The object of these measures is to
provide support for decisions about how {o proceed at crifical junctures in th2 development
efiort

Leve! five measures will add process metrics fo describe the type of process to be used in
development. Emphasis here will be on tracking process measures over time to provide
control feedback o allov dynamic changes in refining development processes.

All of these and other measures are being used to deal vath a broad range of issues across
the corporation as the level of measurement understanding, expertise and maturily grows.
The goal of the effort goes beyond providing a window into the status of a developing sys-
tem; it seeks further to improve the process that guides the development itself.

Along these lines, a number of benefits from measurement are already being realized by
the pilot projects:

Measurement is being applied o help moderate the pace of development and deal
with process issues that have been causing significant problems during testing.

A multi-factor software quality index (SQl) is supporting efforts to evaluate vendors.
A process interplay mictric from the project workbench is helping to tie estimates to
actual results in order to develop a database of estimation efforts.

Persistent overtesting is being addressed by using comg.iexity measures and the
change control/configuration management system to direct testing resources and to
target modules 1or testing.

Portability and reuse efforts are bing supported by measures of design and code.

Estimation has been improved by analyzing complexity ard modeling techniques
made visible through measurement.

Estimates on a particular project indicated that every hour spent on metrics collectw , and
analysis has saved 10 hours on testing. For the first ime in the project team's expenence,
software is not the cause of schedule slips. While it has not been possible to show such
clanty of benefits for all the measurement efforts, SEL has not had any orgamization start
using measurement and then drop it.

The metrics toolkit project is an outgrowth of the organization’s measurement effort.
Automation is viewed as an important adjunct to measurement in order to avoid as much as
possible mea_urement's impact on the development process itself. ideally, the toolkit will
be a part of the development environment fo allow automation of data collection so practi-
tit;ners can take advantage of the tools' ability to provide faster feadback of measurement
information.

58 CMU/SEI91-TR-16

4 B e—

-t

So far 19 tools have been evelualad egainst 2n miemally Coveloped, facel-based cassili-
casen system. The 19 represent an iniizl tools database scheduled to grow over time. The

tocls are evalusted 2gainst the davelopment environment and their consistency with the
defined measures.

Tool evaluation is performed in two steges. The first stzge is a paper exercise eveluating
the procuct kierature and documentation for 2 particular tool's relative applicetxiity to the
organzeton’s measurement progsam. The second stage tzkes promising tools from stage
on2 and parfoms an extended evaluation of the actual tool in operation.

The paper evaiualion looks at the following tool features:
= Typ2: cost estimation, code analysis, elc.
* Aclivity: application development phase, such as design, code, test, etc.
« Level: minimum process maturily level requised
» Method: technique or method supported, i.e.. COCON.0, SADT, JSD, etc.
» Llanguage: programming language(s) suppoited
» Operating system: required for tool to run
+ Platform: required for too! {o run
» Target epplication: system type the tool is designed for, i.e., real-time or MIS

The extended evaluation relates to the following performance issues:
» Performance/speed: of tool execution

« Dataimport/export: means too! provides for interaction with other tools
« Userinterface: ease of use and leaming
« Documentation: availability and overalt quality

« Tool accuracy: in implementing a model for a particular measure, the tool's flexibility
in providing modifiable parameters to the model implemented

« Vendor support: access, response time, helpfulness
« Cost: of use on company-wide scale, not just a sirgle license fee

From the tools evaluations, a cost estimation tool and a static code analysis tool were
chosen as the core of a metrics toolkit. The need for an underlying project management
database conflicted with the time required to define and apply both the measures to be
used and the database to handle the information derived, so the corporate staff opted to
use Lotus 1-2-3 spreadsheets for the database. Software bridges were built from the tools
to the spreadsheets. The toolkit was supplemented with adcitional spreadsheets (for

example, for error tracking) and with a uniform user interface. Four corporate units have
incorporated the toolkit in their developn.ent processes.

The goal of the planned corporate measurement database is to be able to lift spreadsheets
from the projects and place them in the same format on the Sun with Lotus, Oracle and
CART (a classification tree program).

CMU/SEI-91-TR-16 59

.-

Future Plans

The corporate datzbase is being designed in 1991. Also in 1931, the measuremert staff
wid expand is work with the process group in seting up metrics standards, pracgces. {ools,
and the datzbase. Tools buiit directly info the process enhancement environment will not
pemit code to b compied unless measurement goals are met. An Oracle product to allow
Lotus spreadsheets to query the datzbase could be the among the final tools.

Measurement issues targeted for further mvestigation include comparing process descrip-
tion languages, developing measures to describe process characterization and perfor-
mange, and linking project manzgement to estimation.

Another investgative initiative vl! involve allowing the academic community fo access the
corporate measurement database. By providing realistic data to academic researchers, the
organization hepes to focus research toward solving today’s problems rather than investi-
gating tomomow's technology.

Funding

The pilot projects are being funded by corporate overhead raised via a tax on the business
units that also covers the toolkit and the corporate database. Project-specific measurement
activities are funded by the business units themselves.

The budget proposal for 1991 calls for an increase in corporate staff from two to four with
additional rotational assignments for parccular expertise for a total of 5 1/2 people plus an
academic researcher for the summer (the organization supports cooperative research ef-
forts with several universities).

The corporate group is funded directly with about 5% of the SEL budget going to measure-
ment, 7 1/2 % of corporate funds for specific business unit work, and 10 % directly from the
business units for a total of about $525K.

There is an on-going debate about whether the business units or the corporation will pay
for the tools.

Lessons Learned

« “We've made some mistakes (in the measurement program), but our flexible ap-
proach has helped us to recover. A lot more hand holding is required than we real-
ized. Just establishing a program is not enough.”

Productivity evaluations have never been a program priority. The organization is
too diverse for that effort to be of much use. “We're examining processes, not peo-
ple.” To this point, people have not appeared to feel threatened by measurement.

“Staying away from the academic image is important. A lot of people don't under-
stand the R&D center (SEL’s parent organization).” The center is focused on look-
ing at technologies that can be inserted in 3-5 years. The goal is to identify and ap-
ply technologies, not to develop new ones. Ties to university research efforts are
raintained to keep abreast of the evolving state of the art. The lab focus on solving
current problems helps the corporate measurement group avoid appearing “too
academic” as does the strong software background of the staff.

60 CMU/SEI-91-TR-16

- Aulomate as much as possdle. Most projects are fairly small and # is hard to ask
small programs for a Iot of data. “You can only push people so far. If they have to
fil out a form, forgst it~

People tend to want to cversimplify things. They want measurement to simplify the
problem (for example, to rate products with maturily levels 1-5). This is an unfair ex-
peciation; one cannot separate process from measurement. Another problem is that
people want to know, "VWhere do | stand? How can | improve?” The answers to
these questions often reguire a process and measurement maturity not yet
achieved.

The tendency towards simplification of the issues and towards immediate feedback
means effort must be expended to keep the focus on the needs of the corporation
rather than on comparisons to the rest of the software community, and to keep that
focus on process issues, not personal productivity.

Once people find that one tcol helps them, they want more and more, so they have
to find a balance between the benefits of using tools and the time it takes to use
them well.

- The software development process belongs to the corporation. People can leave,
but the process remains as a corporate asset.

It does not matter so much how the corporation compares with ofhers, but rather
how consistent development is within the corporation and whether development is
improving overall.

.

CMU/SEI-91-TR-16

61

A.13. Case 10
Distinguishing Characteristics

This organization is supporting a software measurement initiative that is being jointly spon-
sored by corporate process and quality assurance (QA) groups. Because of the high de-
gree of autonomy granted the line business units, the corporate measurement champions
are working directly with representatives of software practitioners across the organization to
design and establish a uniform measurement program.

Orgaanization

This organization produces a wide variety of equipment and systems that support business
applications. The product line is split into general purpose platforms and application
specific systems.

This company makes its living manufacturing and selling hardware, but much of its financial
success is dependent upon the quality of the software it produces for that hardware. Be-
cause of the compzny’s long and rich hardiware tradition, it is sometimes difficult to maintain
a focus on scftware as a too! to enhance product operation and quality.

A major software program for this company will have up to 100 people working on it and
can produce 1 million lines, but the company has develoged a 4 mitlion line system. The
company has over 4,000 people working on software development world-wide.

As a means to improve its software, both in process and in product, the company has
established corporate level activities to tackle development and quality assurance issues.
As part of that effort, workshops set up by corporate staff and attended by line software
practitioners and managers are conducted periodically. Recommendations from those
workshops are then sent to quality councils (one each for the platform and application
specific ine) for approval.

Metrics History

The organization's measurement effort began over 20 years ago. In 1969, a system was
developed to track field problem reports to better support customer service. At about the
same time specifications for the phases of the software development process were estab-
lished. In 1970 a formal, separate QA section was established at the corporate level. In
1972 corporate QA looked at performing closed loop correction action, but the effort was
viewed as requinng too much effort for the resources available to do the task. The cument
problem tracking program was started in 1979-80 using an adaptation of a commercially-
available off-the-shelf system then in use by the Department of Defense.

In 1978 a major software development process update was performed to overhaul the soft-
ware development phases specification established in the late 1960s, and all developers
were required to use the new process (this included systems issues as well as software
ones). The new process cited a number of required documents and the handoff procedures
for the documents through the development chain.

This process was still intact in 1982 when a decentralization push at the corporate level
made each site a profit and loss center. Instead of direction, corporate level entittes now
give advice and guidance, and indwidual sites have the leeway to tailor their own software

62 CMU/SE!-91-TR-16

development processes. Along with this decentralization in 1982, corporate headguarters
published its davelopment guidslines for software.

in 1985 a corporate vice president for QA was created. This move elevated the issue of
managing the development process to the same level as that of development of the prod-
uct The new QA focus on process was a reaction to a perceived failure on the part of the
original QA group to deal with development issues, and one result of the increased empha-
sis was the release of a corporate quality mission statement in 1986.

The commercialization shift in the early 1980s unleashed the bonds to a common corporate
standard. This proved to be a boon to corporate profits, but the cost center focus on quality
suffered under the short-term view of the profit and loss managers. The re-emphasis on
quality in 1986 was an attempt to recover and maintain the corporation's quality reputation
and long-term financial prospects.

In the easly years, measurement was basically a management tool for project control. In
1988 a program was initiated to get information from the customer database for feedback to
developers regarding key quality factors (reliability, availability, supportability, usability, and
installability).

The impsriance of development process issues to the organization is reflected by the efforts
in recent years to survey development practices and to explore process issues in work-
shops that bring software practitioners and managers from around the world together to
share experiences and to search for better ways to operate. The surveys, performed every
three or four years, help to steer efforts and set priorities of the corporate research and de-
velopment and QA groups, and the workshops foster a dialogue between and among indi-
vidual sites and corporate staff, helping to generate ideas for improvement.

The importance that the individua! sites place on the workshops is reflected in the evolution
of the program over the past 2 1/2 years. The early workshops were attended by people on
division engineering staffs, but the effort required considerably more time and attention than
onginally thought, so a tendency arose to push the assignment off on other people (often
junior QA engineers). Then, the realization that junior engineers did not have enough
authority to deal with the increasingly visible issues related to software development led to
division engineering regaining responsibility for workshop activities. Now, most develop-
ment organizations have process improvement functions.

The most recent Software Process Technology Workshop (August 1990) showed the num-
ber one interest of the attendees was measurement, and development methods were
second.

Current Program

Institute of Electrical and Electromics Engineers (IEEE) Standard 982, Software Peliability
Measures, provides the basis for the current measures being collected. After an initial re-
view of the standard, 22 of the 39 standard measures were selected for initial experimenta-
tion, and nine of those have been approved with seven others still under consideration.
While the IEEE selected its measures to look at reliability, the focus of the organization in
selecting a subset of the standard was on the potental to provide visibility into development
activities.

The IEEE measures are supported by two quality measurement system measures that have
been collected for the past 10 years, but only formalized as part of the measurement pro-
gram last year. Having already experienced the problems related to measurement over-

CMU/SE!-91-TR-16 63

load, corporate and division measurement leaders are continually assessing how much
they can profitably accomplish.

o Moasur

Organization approved measures based on the IEEE standard are:
» Fault density
- Defect density
- Cumulative failure profile
« Functional or modular test coverage
- Requirements traceability
- Emor distributions
- Test coverage
» Mean time to faiiure
« Failure rate

Quality measurement system measures are:
- Counts of defects, and faults, pre and post initial customer installation
« Specification resolution time (actual time needed to correct field defects)

Still under investigation and based on the IEEE standard are:
» Defect indices
« Number of entries and exits per module
- Software science measures
« Cyclomatic complexity
« Minimal unit test case determination
« Testing sufficiency
- Software release readiness

These measures have been selected for their applicability to the rebom corporate focus on
customer service and quality. Customer problem reports are written when field requests for
assistance cannot be handied on the spot (approximately 95% of customer calls are rela-
tively trivial and can be handled “on the spot”). As the report moves through the system,
more information about the problem is obtained and is added to each problem report as itis
uncovered Problems are assigned to a plant team. If the report is indeed a problem, it is
sent to the onginal developer's maintenance group for resolution.

A corporate study on operating systems and compiler errors was performed in 1984-85 on
data from 1973 to 1983. It revealed that half of the modules had no errors and these mog-
ules represented about 30% of the software volume. Some modules had many errors, and
small modules were as ltkely to have errors as large ones.

The current program is designed to assist in the creation of realistic estimates for program
development and to improve customer service. Developers have accomplished several
things using measurement and estimation. better estmates have given them a way to sup-
port their cases when dealing with upper management, there 1s now more support for
planning {and taking the time to make the plans realistic), and developers have been able
to work the trade-offs necessary so that products can be delivered at a certain ime.

64 CMU/SE!-91-TR-16

[FEEEEESEI—————— S

There is at present no feedback loop in the measurement process—the results of analyses
provide status information but are not used to adjust the process. One function of QA is to
look into development process improvement and feedback issues. At the division level,
local sites have the autonomy to tailor their own seftware developiment processes to fit their
needs, and they do so.

While the focus of the measurement efiort has been on quality issues, the visibility into the
development process made possible through measurement has provided some concomi-
tant benefits in analyzing process gains resulting from the application of new technologies.
For example, the QA group was able to document an 8% annual productivity gain at-
tributable to using automated development tools.

The QA group’s experience with measurement has led to a belief that there are different
types of measures: performance (after the fact), predictive, and diagnostic. The need for
performance and predictive measures relfates to the goals of a measurement effort, while
diagnostic measures have specific uses related to cause and effect analysic of factors im-
pacting the first two categories of measures.

Each month sites send measurement reports to corporate QA. While QA is also a staff func-
tion, QA does have some on-site leverage to influence local activities via annual site
reviews.

Future Plans

Neither the organization as a whole nor the divisions in particular have taken great advan-
tage of the measurement program. Cuestions still exist regarding what the measurement
numbers mean. Corporate staff is still investigating to see If it 1s collecting the nght set of
attributes. This investigation was initiated only in the past year, and the data collection i1s
not yet complete.

A cntical issue for the investigation is that of determning how to know when one Las done a
good job—of measurement and of software development. It is too temptng to try to use a
checklist for conformance, and what corporate QA is trying to find is a way to really know the
job 1s done properly. The search for a solution to the question of conformance to standards
often yields the root cause of program problems. failure to follow established processes.

Now corporate QA is trying to identify predictive parameters for a corporate database. In
the future they hope to urify all the measurement databases {(each country has its own with
its own levels and types of automation). They are also looking at vanous cost estimation
models to build on their estimation experience of the past five years.

The organization's view of improvement is that they do not need more invention. “We do
almost everything well, once, somewhere, but how do we transition that expertise to the rest
of the organization?” Once the investigation and evaluations are complete, an education
program will be initiated to transition best practices throughout the organization.

One of the big issues in the most recent workshops was who should pay for measurement
(especially the tools). With a major corporate focus on how the corporation compares to the
rest of the industry, there was significant concern at the local level about who should be
funding the data collection and analysis to support such compansons. Cost estimation was
well accepted when it was performed under corporate overhead (about 50 mangers were
taking ac.antage of it), but there was significant opposition when it came time to transfer the
cost of irie effort over to the profit and loss centers.

CMU/SEI-91-TR-16 65

Among a number of issues regarding the measures themselves was whether it might be

more advantageous to track size by function points rather than by lines of code.

Lessons Learned

Understanding of both process and philosophy is a key goal. Determination of what
is correct from a development standpoint cannot be made separately from business
considerations.

Measurement is designed to generate information to direct action fo achieve specific
results, but the problem is that many people do not get beyond the discussion of
measurement. There is a need to look at measurement goals and the results ex-
pected from the effort.

The need is to have machineable measures for both collection and reporting. Some
measures require historical data to be useful.

Improvement in the product will follow from improvement in the process used to de-
velop it.

Software is still an art in some organizations. It is less so after four years of process
focus in this organization.

Developers often want to know the worth of the metric first and resist expenmenta-
tion to determine utility.

It is not enough to make improvements to development processes. Effort must be
made to mamntain any progress achieved. Corporate surveys of the state of software
practice are performed every 3-4 years to understand why projects succeed or fail.
There is some backshding from performance levels previcusly attained.

66

CMU/SEI-91-TR-16

PR

A.14. Case 11

Distinguishing Characteristics

Aithough there is an initiative to establish a corporate-wide measurement program, divi-
sions have the autonomy to set up their own measurement programs. Measurement 1s
being established for a project in this division by a bottom-up effort, led by the software
development manager of the project. Members of the project team have discussed the
goals of measurement, selected what to measure, and created ngorous definitions for those
measures.

Organization

This organization is a product diviston of a major aerospace corporation. The company was
recently reorganized vertically by product divisions. A process improvement group was
created by this division to provide support for process improvement horizontally across
products. The quality assurance group within this new group focuses mostly on hardware
and mostly on final inspection.

We spoke with the department manager for software for a specific product and his software
qualty assurance engineer. The project will produce 150-200 KLOC written in Ada,
assembly, and Jowvial. Currently, the program is in full-scale engineering development.

Of the 4,600 persons employed at the stte, the 40 software developers on this project repre-
sent the site’s only identifiable software department organization

+

Metrics History

Much of the process improvement groundwork for the department has been performed over
the past 5 years, and most of the 40 employees are new to the company and fairly younyg.
Preparation of all practitioners for the job involves becoming familiar with the project tool
set, environment, and design methoad (which is wrapped around the tool set; the method is
a form of real-ime onented, structured, top-down design). A 22-chapter software standards
manual that establishes the foundation for software development was recently completed.
The continuous improvement culture of the group has meant that even as the last of the
software procedures was being completed, project management was already discussing
where to make the next changes in their plans and processes.

A methods training program has been set up in the department to teach a relatively young
staff the principles and rationale behind the development process. The class has attracted
a number of people from outside the project group including other software people in the
division, plant quality assurance people, and government customer representatives.

The biggest challenge has been bringing engineers with hardware backgrounds to the
point where they understand the nature of software. Other problems include the need to
overcome the negative image of software resulting from past problems in both development
and performance The company as a whole has had difficulty getting plans approved by
customers due to a lack of confidence in the company’s ability to deliver on promises.

CMU/SEI-91-TR-16 67

The company had been collecting metrics data during software development for some
years, but no real attempt to use the data had been made until the measurement effort was
formalized for application to this product. The metrics program is unique to the project.

Since the definition of the measurement program is being performed by the engineers in
the department, they are ipso facto supportive of the metrics effort.

Current Program

Efforts are being made to estimate and track inspection defects and size (LOC, memory
usage, and duty cycle). The software staff is wrestling with making precise, meaningful
definitions of proposed measures.

The major process measure 1s defects resuiting from Fagan-style” software inspections.
The measurement program costs are mmimal. Data collection consumes about 1/2 of a
Jabor month for a technician, affected practitioners perform analyses as part of their jobs
(e.g., supplying charge data on time cards).

Future Plans

The project team has continuous improvement as a major goal. As the team's measure-
ment experience matures, it plans to support a steady evolution of its measurement pro-
gram. At this point, the team can only hypothesize as to the directions in which that evolu-
tion may proceed.

Funding

The program is funded by development funds and has earned the intellectual support of the
customer.

Lessons Learned

« The metrics program supports the decision process that assesses the impact of
changes to system requirements. It provides a baseline for the cost and schedule
estimation system.

It has been easier to get the younger engineers to accept the concept of measure-
ment and to support the program. Given time, however, even the veterans who
were skeptical of the effort have come around to support measurement, and therr
vocal expressions of doubt helped maintain discipline in the program and also
raised issues that needed to be addressed.

There has been no resistance to the data collection effort. Concerns that the inspec-
tion results not reflect back on individuals have been addressed by the very limited
distribution of the inspection action stem list. Inspection moderators, specifically
trained for the task do see the inspection data, but any specific problems that arise

7ME. Fagan, "Dasign and code inspections to reduce errors in program development,” IBM Systems J 15(3)
182-211, 1976,

68 CMU/SEI-91-TR-16

are handled via individual counselin
the writing of the procedures has helped

g. Again, the involvement of group members in

to ease concerns of data misuse. The data

are in a database, but have not been accessed for individual assessment,

* Criical to the acceptance of the measure|

were responsible for developing their ow

ment effort was the fact that practitioners
n procedures. [n the process of developing

those procedures, they bought into the process they were creating.

CMU/SEI-91-TR-16

69

Appendix B. Additional Measurement Program
Information

Additiona! information on establishing and sustaining measurement programs can be found
in:

- Software Metncs: Establishing a Company-Wide Program, R. Grady and D. Caswell,
Prentice-Hall, 1987.

» Managing the Software Process, Watts Humphrey, Addison-Wesley, 1989.

« Software Engineering Process Group Guide, Pnscilla Fowler and Stan Rifkin,
CMU/SEI-90-TR-27, September 1990.

The Software Engmneering Laboratory at NASA Goddard Space Flight Center in
Greenbelt, Maryland, publishes many measurement-oriented reports. Annotated
Bibliography of Software Engineering Laboratory Literature, SEL-82-906, Novem-
ber 1990, contains citations to current reports. Measuring Software Design Quality,
by David Card with Robert Glass, Prentice-Hall, 1990, is an excellent reference to
measurement work conducted at the Software Engineering Laboratory at NASA
Goddard Space Flight Center.

Additional measurement citations can be found in Software Metrics: Citations from
the Computer Database, January 1983 - September 1989, National Technical in-
formation Service, PB89-873673, 1989.

70 CMU/SEI-91-TR-16

